Chapter 1: Introduction
The medical advancement and availability of genetic testing over the course of the last two decades has altered the world in unforeseen ways. With the identification of 15,500 genetic disorders, about 13 million Americans are affected by genetic conditions (US National Library of Medicine and National Institute for Health [NLMNIH], 2010). Currently, there are about 900 different genetic tests available to identify predisposition to various disorders (Beckman). Through the screening of embryos, newborns, children and adults, genetic tests analyze blood and/or tissues to test the presence of a genetic disorder (NLMNIH, 2010). As genetic testing develops in the scientific community, cancer continues to afflict many individuals as the second leading cause of death in the United States (Centers for Disease Control [CDC], 2010). While most cancers are multifactorial in nature, about 15% have been identified to have an inherited susceptibility component as well (Congressional Research Service [CRS], 2010). Despite this high prevalence of cancer, increased medical knowledge has shown that about half of the new cases of cancer can be prevented or detected earlier through screening techniques which include genetic testing (American Cancer Society [ACS], 2010).  

As the first available test for a common disease, the genetic test for breast cancer has received great attention in the medical community (Sankar 399). Breast cancer is the second most frequently diagnosed cancer for women in the United States afflicting about one in eight women (Screening 720; National Institutes for Health [NIH], 2010).  Although genetic cases of breast cancer comprise only 5-10% of the total cases, they tend to be early-onset and result in more fatal cases (Walsh 1379). While a wide range of breast cancer susceptibility genes have been identified, the focus of scientific research has been BRCA1 and BRCA2 mutations (Foulkes 1248). Because the BRCA genes convey a significantly higher risk of developing breast cancer, genetic testing for BRCA mutations has been seen as extremely valuable to identifying individuals who are at high-risk for developing breast cancer (Antoniou 1126). 

With the discovery of the BRCA mutations and genetic tests for cancer, the increasing availability of genetic information has had widespread implications. Genetic information for cancer risk can influence decisions of individuals and family members on prevention, treatment, lifestyle and reproduction (Gostin 323). Furthermore, genetic information has positive implications on society by providing more information on the frequency of genetic disorders in a population (Gostin 323). This information can then be used to develop standard procedures for detection, prevention and diagnosis of genetic disorders. 

While individuals and society have been the beneficiaries of advancing genetic tests, the growth of testing has had adverse effects on the health insurance industry. To protect individuals from genetic discrimination by insurers, legislation has been enacted over the last twenty years restricting the behavior of insurance companies. Because of the insufficiency of state genetic nondiscrimination legislation, federal legislation has been enacted to protect individuals with genetic predispositions. In 2008, the United States enacted the Genetic Information Nondiscrimination Act (hereinafter GINA) which restricts insurance companies and employers from using genetic information. In particular, Title I of GINA disables insurance companies from denying coverage or raising premiums based on genetic information. 

As a result of such legislation, insurance companies have faced greater difficulty in determining the composition of their risk pools. In a problem known as information asymmetry, prospective clients have information about their health which an insurance company does not have access to (Riba 478). By mandating that insurance companies provide coverage regardless of genetic predisposition, insurance companies are forced to insure those who may be a great liability. To subsidize the cost of insuring potentially unhealthy clients, GINA raises the premium of healthy clients. As a result, GINA will likely have adverse economic effects on health insurance companies. 
I. Legislative history of genetic nondiscrimination 

Prior to major advancements in biomedical information, nondiscrimination laws were in place which provided some protection for employees with genetic predisposition to disease (National Human Genome Research Institute [NHGRI], 2010). As a foundation for other nondiscrimination legislation, the Rehabilitation Act of 1973 protects disabled people from discrimination by federal agencies (US Department of Justice, 2010). The Americans with Disabilities Act of 1990 (ADA) provides employees who have symptomatic genetic disabilities with protection from discrimination in the workplace. Despite this advancement, individuals are still required to disclose medical information and could be discriminated against on the basis of a genetic condition which has not yet manifested (NHGRI, 2010). Although the ADA did not explicitly apply to genetic information, the Equal Employment Commission expressed recommendations on this legislation which state that the provision prohibits discrimination on the basis of a preexisting genetic condition (Rothstein Current 175). Additionally, states such as North Carolina and Florida enacted legislation preventing discrimination on the basis of particular genetic conditions (Rothenberg 313).
 
Because broad nondiscrimination legislation provided minimal protection to workers with genetic conditions, more stringent genetic nondiscrimination legislation was put place in 1990 with the unveiling of the Human Genome Project (Rothstein Current 174). Shortly thereafter, Wisconsin commenced a new wave of statewide genetic nondiscrimination legislation that prevented health insurers from discriminating on the basis of genetic tests. Furthermore, this legislation stated that an insurer could not require an individual to obtain a genetic test (Rothenberg 313).  The NIH/DOE Working Group on Ethical, Legal and Social Implications of Human Genome Research in 1993 issued a report explicating that genetic information should not be used to deny insurance coverage to any person (NHGRI, 2010). 
In the Health Insurance Portability and Accountability Act of 1996 (HIPAA), the Federal government instituted groundbreaking nondiscrimination legislation which prohibited health insurers from discriminating against individuals in group plans on the basis of genetic information (NHGRI, 2010). Because most people are covered by employer-based insurance on group plans, this was a major step towards preventing insurance discrimination (Rothstein Current 175).  Despite this progress, HIPAA is limited in its scope. Although it prevents health insurance companies from discriminating on the basis of preexisting conditions if the affected individual had already received coverage with that condition for twelve months or more, it still allows health insurers to discriminate for twelve months against individuals purchasing insurance (NHGRI, 2010). Due to HIPAA’s limited capacity to ensure complete privacy of genetic information, in 2002 HIPAA issued the National Standards to Protect Patients’ Personal Medical Records which protected medical records from being disclosed without the consent of individuals (NHGRI, 2010). As part of this new standard, the Privacy Rule was enacted which classifies genetic information as a form of protected health information (US Department of Health). Although the Privacy Rule was mandated on a federal basis, state laws still have the power to override this ruling (US Department of Health, 2010). 

While states have power to regulate insurance, their influence is limited because of Employment Retirement Income Security Act (ERISA) preemption which prevents them from establishing standards for the use of genetic information on a statewide basis (Rothenberg 313). By 2008, most states had developed some genetic nondiscrimination legislation, with a majority of states prohibiting insurers from denying coverage or adjusting premiums on the basis of genetic information (National Conference on State Legislatures [NCSL], 2010).
 Most of the state legislation applied both to group and individual insurance plans (NCSL, 2010). 
Despite the progress that had been made to prohibit discrimination on the basis of genetic information, there was a growing pressure for federal legislation that would comprehensively address genetic discrimination (Rothstein Current 175). By April 2003, the entire human genome had been sequenced and was made available on public databases (Jones). Although many states had developed legislation which provided some protection against genetic discrimination, the inconsistency of this legislation across state lines caused many clients to refuse genetic testing because of their fear that employers and insurers would discriminate on the basis of the findings (Rothstein Current 175). Furthermore, many individuals feared that insurers would require genetic testing for its insured (Rothstein Current 175). 
As a result of the growing demand for federal legislation, Congress has endeavored over the last decade to set forth legislation that would protect individuals from genetic discrimination. In 2003, several federal legislative measures were proposed which directly or inadvertently dealt with genetic discrimination. The measures which directly addressed genetic discrimination were H.R. 1910, which was proposed in the House of Representative and S.1053, which was proposed in the Senate (NHGRI, 2010). Although neither of these bills passed, they became the basis for the GINA of 2008 (NHGRI, 2010). After introduction in the House and Senate in 2007, Congress addressed the reservations about the bill. GINA eventually passed with unanimous support in the Senate and a 414-1 majority in the House (US Department of Labor [USDL], 2010).
 GINA was signed by President George W. Bush on May 21, 2008 (USDL, 2010).  
II. Language of GINA

In an effort to reduce discrimination towards those with genetic predisposition to medical conditions, GINA places strict restrictions on the behavior of insurance companies and employers. GINA explicitly states that its purpose is “to prohibit discrimination on the basis of genetic information with respect to health insurance and employment.” (“The Genetic Information Nondiscrimination Act of 2008”). Although a major focus of debate has been discrimination by employers, this paper considers solely the implications of GINA on the insurance industry (NHGRI, 2010). As the cornerstone of GINA, Title I lays out the restrictions on insurance companies in acquiring or handling genetic information. Specifically, through amendments to the Employee Retirement Income Security Act of 1974, Pubic Health Service Act, Internal Revenue Code of 1986, and Title XVIII of the Social Security Act, GINA prohibits insurers from discriminating against those genetically predisposed to illnesses (Jones). 

Although the specific language of GINA adapts to fit within the context of these amended laws, there are three consistent themes within Title I which apply to most or all of the amendments. First, GINA explicitly prohibits insurance companies from adjusting the premiums for a group plan based on genetic information (“The Genetic Information Nondiscrimination Act of 2008,” Title I, Sec. 101). According to GINA, “genetic information” refers to information about an individual’s genetic tests, a family member’s genetic test, and the development of a disease or disorder in a family member (“The Genetic Information Nondiscrimination Act of 2008,” Title I, Sec. 101).
,
  Once a disease has manifested, the health insurer is allowed to increase the price of the premium (Genetics and Public Policy Center, 2010). 

Furthermore, GINA also prohibits insurance companies from mandating that clients have to undergo any genetic testing for the purposes of underwriting (“The Genetic Information Act of 2008,” Title I, Sec. 101). However, if a health plan offers potential coverage for genetic testing and disease prevention, the results of genetic testing can be obtained for the purpose of determining payment (“The Genetic Information Nondiscrimination Act of 2008,” Title I, Sec. 101). Health care insurers can also request that an individual participate in a research study if it is agreed, among other things, that the results of the genetic test will not be used for the purpose of underwriting an insurance policy in a group or individual plan (“The Genetic Information Nondiscrimination Act of 2008,” Title I, Sec. 101).. 

Lastly, GINA prohibits  health insurance companies from requesting, requiring or purchasing genetic information for the purpose of underwriting insurance policies or determining the enrollment of an individual (“The Genetic Information Nondiscrimination Act of 2008,” Title I, Sec. 101). If the health insurer company does incidentally acquire such information, it is not considered a violation of GINA under certain circumstances (Genetics and Public Policy Center, 2010). 

In addition to these three main themes, GINA makes other crucial restrictions to insurance companies. According to Title I, genetic information is subject to the laws of HIPAA, which specifies that health care providers are not able to disclose an individual’s private medical information to any insurers (“The Genetic Information Nondiscrimination Act of 2008,” Title I, Sec. 1180). Moreover, those covered by Medicare also benefit from the restrictions set forth in GINA (Genetics and Public Policy Center, 2010). In order to enforce the provisions, GINA enables the Secretary to impose a penalty of $100 per day of noncompliance, or in the case of willful neglect, a minimum penalty of $2,500 (Jones).
 Because no major amendments were proposed, GINA went into effect on May 21, 2009 (Genetics and Public Policy Center, 2010). 

III. Purpose of this Analysis  

Considering the legislative framework of GINA, this analysis seeks to explore the effects of Title I of GINA, particularly on the health insurance industry. To illustrate the economic implications of GINA on the health insurance industry, this analysis specifically considers the case of genetic testing for breast cancer. Through understanding the biological characteristics and procedures for risk assessment and genetic testing of breast cancer, an estimate of the medical costs and appropriate coverage by insurers can be determined. Based on the results from the economic analysis, GINA should not have been enacted because of its adverse implications for the health insurance industry.
This work is organized into sections as follows. Chapter 2 is an overview of the relevant biological information necessary to understand the risk, prevention and treatment of genetic breast cancer. Chapter 3 discusses the standard procedure for breast cancer risk assessment through mathematical modeling and genetic testing. Chapter 4 is an economic analysis of Title I of GINA as studied through the case of genetic breast cancer. To illustrate the economic implications of GINA, this section compared the outcome of two scenarios: one with GINA enacted, the other without GINA. Chapter 6 provides an overview of some popular arguments in support of Title I as well as arguments in opposition to Title I. Based on research obtained in this analysis, Chapter 6 concludes that GINA should not be federally mandated in the United States as it would result in overall harm to society. 
Chapter 2: Biological Characteristics of Breast Cancer
I. Background 
To provide a comprehensive framework for the discussion of health insurance coverage for breast cancer predisposition, this section describes the biological features of breast cancer. From the perspective of a health insurance company, it is imperative to understand the biological information about breast cancer as the risk factors, detection, prevention and treatment methods influence the costs of an insurance company when providing coverage to those prone to breast cancer. Specifically, it is important to consider the risk factors which increase an individual’s propensity to actually develop breast cancer. Once a risk has been identified, the insurance company must recognize the degree of control an individual has in monitoring the development of cancer. Lastly, the biological information is important to understanding the cost of providing coverage for prevention and treatment methods. By considering the intricacies of genetic breast cancer, the expectations for an insurance company to provide certain types of coverage can be seen.   

II. Main types of breast cancer 

According to the National Cancer Institute, breast cancer is defined as the “cancer that forms in tissues of the breast, usually the ducts (tubes that carry milk to the nipple) and lobules (glands that make milk)” (National Cancer Institute [NCI], 2010). Ductal carcinoma in situ (DCIS) is the most common form of non-invasive breast cancer, with approximately one in every five new cases of breast cancer being diagnosed as DCIS (ACS, 2010). DCIS is the growth of preinvasive tumors which have the potential to develop into invasive breast cancer (Castro 1). When cancer cells are found in the in situ phase, they are present in the ducts of the breast but have not spread to the surrounding breast tissue (ACS, 2010). Therefore, if a woman is diagnosed with DCIS, it does not necessarily lead to invasive breast cancer (Screening 722).   In about half of the cases when DCIS goes untreated, it becomes invasive cancer (Screening 722). 

When cancerous cells in the duct infiltrate into the surrounding breast tissue, invasive ductal carcinoma (IDC) develops and has the potential to metastasize due to its access to the bloodstream and lymph nodes (ACS, 2010).  IDC is the most common form of breast cancer, with approximately eight in every ten cases of breast cancer being attributable to IDC (Screening 722; ACS, 2010).  Although researchers have yet to find a precise method to determine whether someone will develop invasive breast cancer based on DCIS, the expression of particular genes such as SULF-1 and LOX have been found to be possible indicators of DCIS development into invasive breast cancer (Castro 12). The progression of DCIS into invasive breast cancer can be rapid or change very little in five to twenty years (Porter 362). 

After ductal carcinoma, lobular carcinoma is the second most prevalent form of breast cancer. Like ductal carcinoma, lobular carcinoma has different stages which indicate the severity of the cancer. Lobular carcinoma in situ occurs when cancer cells are in the lobules which are the milk-producing glands in the breast (ACS, 2010). When the cancer spreads from the lobules to other parts of the body, it becomes invasive lobular carcinoma (ACS, 2010). Women who have lobular carcinoma in situ have about 10-20% chance of developing invasive breast cancer (Mayo Clinic, 2010). 
III. Pathology of Breast Cancer 

Like most types of cancer, breast cancer develops when cancerous cells amass forming an accumulation of tissue known as a tumor (NCI, 2010). A tumor in the breast is considered benign when it can be easily removed and does not spread to the rest of the body. Benign tumors tend to be round in shape and soft to touch. Benign breast cancer is commonly diagnosed and encompasses nonproliferative lesions, proliferative lesions without atypia, and atypical hyperplasias (Hartmann 230). Alternatively, if a tumor develops which has the potential to re-grow and is life-threatening, it is a deemed a malignant, or cancerous, tumor. Malignant tumors tend to be oddly shaped with a hard texture (NCI, 2010). 

While the presence of a tumor can be non-threatening, it has the potential to develop into invasive breast cancer. Many types of premalignant lesions are commonly diagnosed but rarely progress into invasive breast cancer (Allred 47). However, breast cancer is able to develop through a series of stages, beginning with small premalignant lesions developing into ductal carcinoma in situ which further develops into invasive breast cancer (Castro 2). Specifically, atypical ductal hyperplasia, atypical lobular hyperplasia, and ductal carcinoma in situ are the known to be among the main lesion-types which lead to invasive breast cancer (Allred 47). Furthermore, breast cancer cells are able to spread to other parts of the body when they enter blood vessels or lymph vessels (NCI, 2010). 

Although many factors associated with the development of breast cancer have been identified, a high exposure to estrogen is an overarching feature of breast cancer pathogenesis (Clemons 276).  From a general oncological perspective, “excessive hormonal stimulation of a target organ” can lead to an increase in the likelihood that a growth will develop (Henderson 3232). Because estrogen has genotoxic properties, it can incite tumor development and release chemicals which can damage DNA (Clemons 276). Although a high level of estrogen estradiol is known to increase a woman’s likelihood of developing breast cancer after menopause, an increased level of estrogen in premenopausal women may also contribute to invasive breast cancer development (NCI, 2010). 

In order to understand effective treatment methods for breast cancer, researchers have focused on determining the causes of breast cancer. Because of the multifactorial nature of breast cancer, physicians and genetic counselors must consider biological and lifestyle factors to identify people who are at risk for developing breast (NCI, 2010).  In an effort to inform women about the risk factors for breast cancer, the National Cancer Institute has published a basic brochure which lists the current risk factors known for breast cancer.
 Based on the framework provided by the National Cancer Institute, an explanation of the risk factors and corresponding scientific verification are described below:

1) Age

Age is considered a risk factor for breast cancer, because the likelihood of developing breast cancer increases as a woman becomes older (NCI, 2010).
  Although the biological reasoning has not been verified, one possible explanation is that women have increased levels of estrogen or higher body weight after menopause which can contribute to breast cancer risk (Hulska 204). Furthermore, cells in the body have greater potential to adopt abnormal changes with age (Susan B. Komen for the Cure, 2010). Because age as a risk factor exists independent of genetic history, it can be considered the most important risk factor for developing breast cancer (Screening 718). Although about one in eight cases of invasive breast cancer are found in women under the age of 45, about two of every three cases of invasive breast cancer are found in women over the age of 55 (ACS, 2010). 

2) Personal health history 

Personal health history is a risk factor for breast cancer as certain events and health criteria can indicate a higher risk for developing breast cancer. One such factor that may indicate a higher risk would be a personal history of abnormal breast cells (NCS, 2010). Specifically, a history of benign breast growth can lead to a higher risk of developing breast cancer (Hartmann 230).
 While the relative risk of developing breast cancer for a woman with atypia over the age of 55 is 3.5, the relative risk for a woman over the age of 45 is 7 (Hartmann 236).
 Although atypia hyperplasia and in situ breast cancer are typically the focuses of elevated benign breast cancer risk, other lower-category benign breast diseases are commonly found (Wang 619).
  With a personal history of a lower-category growths, women have a 1.41 relative risk of developing breast invasive breast cancer. Besides the personal history of benign growths, history of invasive breast cancer also correlates with a higher relative risk of developing breast cancer in the future. Women who have had breast cancer in one breast have a three to four times higher risk of developing breast cancer a second time (ACS, 2010). 


3) Family history of breast cancer 
Family history is a risk factor for developing breast cancer, because certain germline mutations in DNA can convey a predisposition to developing breast cancer (Robson 154). 

About 20-30% of breast cancer cases are attributable to family history of the disease (ACS, 2010). Because it is believed that a single mutated allele can elevate the risk of developing of breast cancer, genetic predisposition to the disease can come from the maternal or paternal side (Robson 154). Although several genes are suspected to confer an elevated risk, the major genes are BRCA1 and BRCA2, located on chromosomes 17 and 13 respectively.  The lifetime risk of developing breast cancer with one of the BRCA mutations is 50-85% (Antoniou 1126).
 As a result of the recent development in scientific knowledge regarding the BRCA mutations, several mathematical models have been developed which incorporate family history as a primary risk factor in determining an individual’s risk of developing breast cancer. 

4) Reproductive and menstrual history 

Reproductive and menstrual history are risk factors for developing breast cancer, because they are associated with increased exposure to endogenous sex hormones (Dumitrescu 209). A vast amount of scientific literature supports the claim that early age at menarche and late age of first pregnancy increase risk of developing  breast cancer (Clavel-Chapelon 723).
,
 Furthermore, the number of cases of breast cancer risk decreases with multiparity and therefore increases when a woman does not bear any children (Clavel-Chapelon 724, 726; Dumitrescu 211). Breast cancer risk also increases as menopause is delayed, as it increases the amount of menstrual cycles and estrogen exposure a woman experiences (Dumitrescu 211). Lastly, women who take menopausal hormone therapy also have an elevated risk of developing breast cancer (NCS, 2010). 

5) Race and geographic location

Race is a risk factor for developing breast cancer as certain racial groups have a higher prevalence of breast cancer. Incidence of breast cancer is highest for Caucasian women, with approximately 127.8 of 100,000 women being diagnosed with breast cancer (NIH, 2010). Although there is a higher incidence of breast cancer in Caucasian populations, there are more cases of mortality from breast cancer in African-American populations (ACS, 2010). Specifically, the Carolina Breast Cancer Study revealed a higher prevalence of basal-like subtype breast cancer in premenopausal African-American women (Carey 2499-2500).
,
 Because certain populations of women have less access to education and high quality medical care, they are diagnosed later with breast cancer increasing the likelihood that the breast cancer with be fatal (Yu 1). 

Furthermore, geographic location also potentially can impact an individual’s risk of developing breast cancer. Regional differences in breast cancer incidence may be attributable to genetic and/or environmental differences between populations (Dumitrescu 209). In general, the North America and Europe have the highest incidence of breast cancer, whereas Asia, Africa and South America have lower incidence (Dumitrescu 209). 

6) Breast density

Breast density is considered a risk factor as greater breast density confers a higher risk of developing breast cancer (ACS, 2010). Subsequent to age and possessing a BRCA mutation, breast density is the third highest risk factor for breast cancer, with an associated relative risk of 1.4-6.2 (Modugno 157). Breast density is a measure of the ratio of fibroglandular tissue to fat in the breast (Modugno 161). Because breast tissue density can reflect proliferation by sex hormones and DNA damage, it remains an important risk factor for determining an individual’s risk of developing breast cancer (Boyd 114). Since breast density tends to decrease with age, mammographic screening becomes less reliable as a woman ages (Modugno 161, 164). In addition to age, breast cancer risk through high breast density can be compounded by other risk factors such as age at first birth (Boyd 119).

7) History of taking the hormone diethylstilbestrol (DES) during pregnancy 

From 1940 through the 1960s, women were given DES, because it was believed to help reduce the likelihood of miscarriage (ACS, 2010). Data suggests that about two million women could have been exposed to DES at some point during this time frame (Palmer 1509). DES has been suspected of altering women’s hormone levels which could contribute greater risk of developing breast cancer (Palmer 1513). Exposure to DES has been shown to increase breast cancer risk by 1.9 times for women who are forty and older (Palmer 1512). 

8) Obesity or overweight after menopause 

Obesity is considered a risk factor for developing breast cancer, because higher body weight increases exposure to estrogen (Clemons 276). Studies have revealed that a high BMI increases the risk of developing breast cancer after menopause (Delort 1093).  In an epidemiological study of approximately 5,000 women with breast cancer, an increase in weight since menopause resulted in high breast cancer risk (Eliassen 199). Despite this finding, weight loss after menopause decreased the risk of developing breast cancer (Eliassen 199). The correlation between obesity and breast cancer risk is particularly problematic given the high rates of obesity among women in the United States.
 

9)  Lack of physical activity 

Lack of physical activity is also associated with a higher risk of breast cancer. Like obesity, physical activity can alter a woman’s exposure to estrogen and other vital hormones (Thune 1269). In a study done on a cohort of 25,000 women, increased physical activity during work and leisure time resulted in a decreased risk of developing breast cancer (Thune 1273).
  One study showed that women with breast cancer who walk three to five hours a week have the best chance for reducing the risk of breast cancer reoccurrence (Holmes 2485).
 Furthermore, studies have shown that increased physical activity after breast cancer has also led to a decreased risk in mortality from breast cancer (Holmes 2479).


10) Drinking alcohol 

Similar to many of the other risk factors, alcohol consumption has been associated with a higher risk for developing breast cancer because it is known to alter the estrogen levels in a woman’s body (Zhang 667). Despite the widespread implications of this finding, many studies have found that alcohol particularly triggers cases of breast cancer where estrogen or progesterone receptors are overexpressed (Zhang 673). Many studies have found that a moderate intake of alcohol can increase breast cancer risk by approximately 30-50% (Terry 230). In light of these recent scientific findings, the American Institute for Cancer Research has recommended that women limit alcohol consumption to one drink per day (NCI, 2010). 

11) Oral contraceptives

Although the National Cancer Institute does not identify it as a risk factor, many sources have considered oral contraceptive use to significantly increase a woman’s risk of developing breast cancer (Breast Cancer). This risk is greatest for women who currently use oral contraceptives and in the ten years proceeding usage (Breast Cancer). Despite these findings, an epidemiological study of breast cancer incidence and oral contraception use in the general population has shown that oral contraception does not have a significant effect on increasing the risk of developing breast cancer (Marchbanks 2030). When considering the relevance to familial cases of breast cancer, women who have genetic predisposition to breast cancer (a BRCA1 or BRCA2 mutation) or have a first-degree family history of breast cancer, oral contraceptive use may lead to an elevated risk of developing breast cancer (Grabrick 1796, Delort 1091).


11) Other potential risk factors 

Although other risk factors have not been discussed in this section, they continue to be investigated thoroughly by researchers. Such risk factors include environmental pathogens that may infiltrate into a woman’s body either at work or home. Specifically, polybrominated diphenyl ethers (Sprecher Institute for Comparative Cancer Research, 2010), a chemical used as a flame retardant, is an environmental agent that has been identified as potentially stimulating the growth of breast tumors which are dependent on estrogen (Sprecher Institute for Comparative Cancer Research, 2010). Furthermore, biological factors that most likely contribute to breast cancer risk include high bone density and exposure to light at night (NCI, 2010).
 Biological factors that possibly contribute include premenopausal red meat consumption and premenopausal hormone insulin-like growth factor 1 (IGF-1) (NCI, 2010). 

IV. Background of genetic breast cancer  

While both biological and lifestyle factors may indicate a higher risk of developing breast cancer, the genetic component of breast cancer identifies many women with a particularly strong risk of developing breast cancer. Despite the fact that only 5-10% of cases of breast cancer for Caucasian women in the United States are attributable to highly penetrant genetic mutation, this translates to 9,619-19,238 new cases of breast cancer in the United States in 2009 (Walsh 1379; NCI, 2010).
,
 Furthermore, questions surrounding hereditary breast cancer remain a high priority for researchers, as genetic mutations can account for many of the aggressive and fatal cases of breast cancer. 

Although different categorizations of breast cancer susceptibility genes exists, the focus of this work is specifically the BRCA mutations. The BRCA genes are part of a larger grouping of breast cancer susceptibility genes known as the “rare, high-risk alleles” (Foulkes 2148). However, because BRCA mutations occur in about one in every 250 women, approximately 250,000 women in the United States are carriers of a BRCA mutation. Despite this high incidence of genetic predisposition to breast cancer, only about 10,000 carriers have been identified (Narod 666). 

Although the BRCA mutations are relatively rare, they have gained great attention because of their highly penetrant nature (Foulkes 1248). Women who have one of the BRCA mutations have a ten times greater lifetime risk of developing breast cancer compared to women in the general population (NIH, 2010).
 Moreover, while inheriting a BRCA mutation is relatively rare for a woman in the Caucasian population, certain ethic groups, particularly Ashkenazi Jewish women, have a significantly higher likelihood of inheriting such a mutation (Carroll 1691).
 


Prior to the identification of the breast cancer genes BRCA1 and BRCA2 in the early 1990s, researchers recognized the autosomal dominant transmission of genetic breast cancer (Pasche 3). Because researchers had determined that a hereditary connection to breast cancer exists, they sought to identify the precise molecular basis for genetic breast cancer. In a study done on 1,579 families with high-risk breast cancer history, researchers analyzed family pedigrees and used segregation analysis to identify the transmission of breast cancer (Newman 3044-5).
,
  Through considering various methods of transmission, the study found that autosomal dominant transmission most accurately accounted for the family histories of breast cancer (Newman 3046). Furthermore, the authors of this study point out that although genetic mutation only explains a small proportion of breast cancer cases, understanding cases of genetic breast cancer can instill a model for prognosis for breast cancer as a whole (Newman 3047). 


After establishing the autosomal dominant transmission of breast cancer, researchers identified BRCA1 and BRCA2 as the primary genes responsible for genetic transmission of breast cancer. Although scientists are usually unable to pinpoint the precise cause of onset for each breast cancer victim, studies have shown the BRCA mutations account for 80-90% of all hereditary cases of breast cancer (NIH, 2010). While more than 2,600 mutations have been identified for the BRCA genes, about 90% of the deleterious mutations are on 185delAG (BRCA1), 5382insC (BRCA1), and 6174delT (BRCA2) (Carroll 1691; Pasche 2). Furthermore, all of the genetic mutations for BRCA genes are frameshift or nonsense mutations (Teng 86).
,
 Because of their abnormal form, these cells to have less of an ability to repair damaged DNA and create a complete protein product (Teng 86). 

Although both BRCA genes confer a high risk of developing breast cancer, mutations in the BRCA1 gene are especially deleterious and common (Pasche 2; Ellisen 429). Through genetic linkage analysis performed in 1991, scientists discovered a link between breast cancer and the BRCA1 gene on chromosome 17q21 (Hall 1684; Ellisen 427). In 1994, scientists found that mutations in this gene could be traced in families with early-onset cases of breast cancer (Miki 66). 

Even though the exact function of BRCA1 is unknown, it is most likely essential for regulating DNA repair, transcription and cell cycle progression (Pasche 1). BRCA1 is a nuclear protein which can be induced by hormone signals such as estrogen and progesterone (Ellisen 429). Furthermore, it is a tumor suppressor gene and is composed of 5,592 nucleotides and 24 exons while encoding for a protein consisting of 1,863 amino acids (Teng 85; Ellisen 426). While mutation in the BRCA1 gene could produce a variety of outcomes, 80% of mutations in BRCA1 inactivate the production of the protein due to a premature stop codon (Ellisen 427).  

Because of the unique characteristics of BRCA1 mutations, a certain prognosis for breast cancer attributable to BRCA1 mutation is typically diagnosed. In general, BRCA1 cases of breast cancer are considered “triple negative” because carcinomas do not express estrogen receptor, progesterone receptor or HER2. BRCA1 tumors also tend to be of a high-grade subtype and manifest themselves with basal-like phenotypes (Bordeleau 13; Teng 86).
 While BRCA1 mutations are prevalent in hereditary forms of breast cancer, they are not typically sporadic mutations (Ellisen 427-8). In addition to an elevated risk of breast cancer, women with a BRCA1 mutation also have a 20-40% chance of developing ovarian cancer (Haber 1660). Individuals with a genetic mutation on BRCA1 may also have an increased risk for colon and prostate cancers (Ellisen 427). 


Although BRCA1 confers a significantly elevated risk for breast cancer, BRCA2 conveys a more moderate risk of developing breast cancer. Proceeding the discovery and identification of BRCA1, the connection between breast cancer and BRCA2 on chromosome 13q12-13 occurred in 1994 (Ellisen 429; Narod 665). Similar to BRCA1, the BRCA2 gene serves to repair DNA damage but also functions in homologous recombination (Teng 86; Narod 668). BRCA2 can bind with BRCA1 and help in DNA damage repair and recombination (Teng 86). BRCA2 can also induce the translocation of the protein RAD51 into the nucleus after the double-stranded DNA breaks and directs RAD51 to the site of breaks for homologous recombination-directed repair (Ellisen 429). BRCA2 is much larger than BRCA1, with 10,485 nucleotides and a 27 exon-coding region. Furthermore, BRCA2 encodes a protein of 3,418 amino acids (Ellisen 429; Teng 86). 

Due to its distinct characteristics, the prognosis of BRCA2 differs from BRCA1. Tumors induced by mutation in BRCA2 rarely display the basal-like phenotype and tend to be of a lower grade subtype (Teng 86). Because of its lower tumor grade, less severe cases of breast cancer, i.e. more cases of carcinoma in situ, tend to be associated with BRCA2 breast cancer (Narod 673). Furthermore, unlike BRCA1, BRCA2 tumors tend to be estrogen and progesterone receptor positive.  Due to these characteristics, BRCA2 tumors have been found to be morphologically similar to sporadic cases of breast cancer (Narod 672). Although women with the BRCA1 mutation have a thirty-fold higher risk of developing breast cancer between ages 40-60, women with a BRCA2 mutation have a ten to sixteen-fold higher risk of developing breast cancer (Pasche 4).
 Furthermore, BRCA2 mutation is much less prevalent than BRCA1 (Ellisen 429). Although mutations in BRCA2 confer a risk of developing ovarian cancer, only 10-20% of women with a BRCA2 mutation will develop it (Haber 1660). 


In addition to BRCA1 and BRCA2, other rare genetic mutations exist which can be highly penetrant in the development of breast cancer (Foulkes 2148). These high-risk susceptibility genes include PTEN, CHD1, STK11, and TP53 (Foulkes 2148).
 Despite the discovery of these genes, they have been found to only account for less than 1% of the cases of breast cancer (Foulkes 2147). The non-BRCA cases of breast cancer also tend to have lower grades and mitotic counts (Teng 86). After the discovery of the BRCA genes in the 1990s, some researchers aimed to find another breast cancer gene which would explain more cases of hereditary breast cancer (Narod 673). While scientists have continued their efforts to discover the “BRCA3” gene, it remains largely unexplored and continues to be pursued in scientific study (Narod 673). 

Besides the highly penetrant, rare genetic mutations which increase breast cancer risk, two additional classifications of breast cancer susceptibility genes have been made. One group is the “rare, moderate risk alleles” which include BRIP1, PALB2, CHEK, and ATM genes (Foulkes 2148). These genes tend to confer a relative risk of approximately 2 or 3 (Foulkes 2147). Additionally, a class of “common, low-risk alleles” exists which includes TOX3, LSP1, MAP3K1, FGFR2, AKAP9, and CASP8 (Foulkes 2148). 

V. Detection of breast cancer 

After identifying risk factors for breast cancer, some women choose to undergo precautionary detection measures to ensure that they do not show signs of breast cancer development. Because early detection of breast cancer can usually lead to a more proactive treatment regimen, it increases the chance that the individual will survive from breast cancer. Data reveals that approximately 60% of breast cancer cases are found in their localized stage, where there is a 98.3% likelihood of survival (NIH, 2010). Based on a woman’s estimated risk for breast cancer, various detection methods can be employed to increase the likelihood that breast cancer can be caught in a treatable stage. 


While a wide variety of detection methods exist, breast self-examination (BSE) is commonly used as an early form of detection (ACS, 2010). By using specific techniques, BSE instills the ability for a woman to observe any changes in the breast (ACS, 2010).
 If a change in the breast is observed, a woman should notify her physician to investigate the matter further (ACS, 2010). Similarly, a clinical breast exam is done by a health care provider to determine if there are any lumps or changes in the shapes and sizes of the breasts (NCS, 2010). While women in their twenties and thirties should undergo a clinical breast exam about every three years, women above the age of 40 should have it done every year (ACS, 2010). Although BSE and clinical breast examination can help in early detection of breast cancer, a drawback is that sometimes there are false positive test results which can lead to psychological issues (Screening 718). 


Although self and clinical breast examinations are a milder approach to detecting breast cancer, regular mammography is a more strenuous measure but provides greater accuracy in breast cancer detection. Mammography is a tool in which an x-ray image of the breast tissue is generated (NCS, 2010; ACS, 2010). Through this image produced, physicians are able to identify tumors, microcalcifications, and changes in the skin (ACS, 2010). If the physician notices that there is an abnormal section on the mammogram, he or she may call for a more detailed image of that area including MRIs and ultrasounds (NCS, 2010). Mammography is considered a valuable tool for detection because it can show a growth in the breast region before it manifests itself on the physical body and can be felt (NCS, 2010).  Furthermore, because mammography is successfully able to identify breast cancer when it remains in the local region, it is important for helping reduce fatal cases of breast cancer (NIH, 2010). 


While the benefits of mammography have been accepted by the medical community, debate exists regarding the correct age and frequency which women should be given mammograms. In 2002, the United States Preventative Services Task Force (hereinafter USPSTF) recommended that women ages 40 and older receive mammograms either annually or biennially (Mundy). As a result, insurances companies were pressured to provide coverage for such activity (Mundy). However, recently, the USPSTF has found that women ages 40 to 49 should not receive mammograms (Screening 717).
 The USPSTF found that the drawbacks of mammography during this time include: psychological harm; unnecessary imaging tests and biopsies in women without breast cancer; “inconvenience” due to false positive results; premature and unnecessary radiation; and overdiagnosis (Screening 717).
 

Because it is now recommended that women ages 40-49 should have the discretion to determine whether to receive mammograms or not, there is less pressure for insurance companies to provide insurance coverage for mammograms in these years (Mundy). To prevent insurers from denying coverage for breast cancer care, the Senate voted to continue to provide mammogram coverage to women from ages 40-49 (Mundy).
 The USPSTF report recommends that women between ages 50-74 should receive mammograms biennially (Screening 716).
 Women ages 60-69 have been shown to receive the greatest benefit from mammography in terms of finding presymptomatic breast cancer (Screening 717). 

For women with a family history of breast cancer, it is recommended that they start mammographic screenings five to ten years before the youngest age when breast cancer was diagnosed in the family (Robson 157). Because women who have BRCA1 or BRCA2 mutations often develop larger tumors, it is beneficial to screen them more often (Kriege 437). The American Cancer Society recommends that these women who are at “high-risk” (lifetime risk greater than 20%) receive mammograms and MRIs annually (ACS, 2010).

In addition to mammography, magnetic resonance imaging (MRI) is another valuable detection tool for breast cancer. MRI is a tool which provides a picture of normal versus abnormal tissue in the breast region using magnets and radio waves (NCS, 2010; ACS, 2010). Because MRI can more accurately assess the size of the tumor, MRI has been shown to be more effective than mammography in detecting breast cancer growth for high-risk women (Screening 718). In particular, MRI has also been shown to be highly effective in detecting hereditary breast cancer (Robson 157). 

Despite these advantages, a drawback of MRIs is that they are more likely than mammograms to yield a false positive (Screening 718).  Although MRIs can detect cancerous regions better, they have less specificity requiring further follow-up investigations of the region (Kriege 436). MRI is also unable to detect many cancerous locations that are traceable with mammography (ACS, 2010). Moreover, the benefits of MRIs are not accessible to many women because of expense (Pharaoh 2802). 

While mammography and MRIs are best able to detect breast cancer in its preliminary stages, supplementary follow-up procedures are done to ensure that breast cancer is not present. In an effort to remain less invasive, physician often use ultrasound as a follow-up to an abnormal mammogram (ACS, 2010). Through use of sound waves which bounce off of breast cells, ultrasound imaging is used to determine whether the lump is solid or filled with a fluid. When the lump is solid, it has the potential to be cancerous (NCS, 2010). If physicians deem it necessary, a more invasive procedure like biopsy can be employed to determine whether abnormal mammograms have medical implications (ACS, 2010). Biopsy physically removes tissue from the breast to determine whether it is cancerous or not (NCS, 2010). Once a biopsy has been performed and the doctor determines that it is cancer, the next step is to examine the tissue to determine whether it is positive for hormone receptors and HER2 protein (NCS, 2010). Because tumors can develop from an excess of either of these elements, the doctor can determine the appropriate treatment method based on abnormalities in their quantities (NCS, 2010).  

VI. Prevention and Treatment methods 


While greater knowledge about early detection methods has contributed to the decline in breast cancer mortality, prevention and treatment options have complemented this breakthrough to help reduce breast cancer severity and fatalities. Currently, about 2.5 million people living in the United States have survived breast cancer (ACS, 2010). Furthermore, nearly 90% of women diagnosed with breast cancer will survive at least five years (NIH, 2010). Considering a woman’s unique risk assessment for breast cancer, prevention methods can be employed which reduce the likelihood that cancer will actually develop. Even after breast cancer has been diagnosed, the same methods can be used to treat the cancer and reduce the risk of reoccurrence of breast cancer. Through catering a treatment regimen based on an individual’s unique history and pathology of breast cancer, physicians are able to provide a variety of prevention and treatment options to reduce the likelihood of cancer development. 


As the oldest form of treatment for cancer, surgery stands a primary option for treating breast cancer at various stages (Susan B. Komen for the Cure, 2010). Surgery is the most common treatment method for breast cancer (NCI, 2010). Furthermore, breast surgery is supplemented with additional treatment methods to help prevent relapse from occurring (Susan B. Komen for the Cure, 2010). 


Due to its less invasive nature, lumpectomy or breast-conserving surgery is often seen as a more desirable surgical option for treating and preventing breast cancer. Lumpectomy is performed with the intention of removing the specific cancerous region on the breast (NCS, 2010). The physician may also choose to remove some surrounding normal tissue as well as the lymph nodes under the arm to assure that the cancer is completely eradicated (Susan B. Komen for the Cure, 2010). Breast-conserving surgery is mostly for women with stage one or two breast cancer (ACS, 2010).
 Lumpectomy with corresponding radiation therapy has replaced mastectomy in treating many cases of women who have early-onset breast cancer (NIH, 2010). 


In addition to breast-conserving surgeries, mastectomy can also be performed to remove breast tissue prior to or after breast cancer diagnosis. Mastectomy aims to remove as much of the breast tissue as possible (NCS, 2010).
 Subsequent to mastectomy, a woman can have breast reconstruction surgery where the breast is rebuilt (NCS, 2010). For prophylactic mastectomy, a woman has breast tissue removed when she is deemed to have a high risk of developing breast cancer in the future (ACS, 2010). Studies reveal that prophylactic mastectomy can reduce breast cancer risk by 90% (Pasche 4). Furthermore, 15% of people who have a BRCA mutation undergo prophylactic mastectomy (Pasche 4). However, a clinical recommendation states that women with a BRCA mutation should have prophylactic mastectomy after their childbearing years (Rebbeck 1620). 


Despite the obvious benefits of mastectomy, there are several drawbacks which prevent women from undergoing prophylactic mastectomy. Because of the psychological body issues that may ensue after a mastectomy, women are hesitant to alter their bodies in such a dramatic fashion (Haber 1660). Furthermore, because a woman’s risk of developing breast cancer is only a probability, it is not guaranteed that a woman will actually develop breast cancer in her lifetime. Therefore, many women opt not to undergo prophylactic mastectomy in the hopes that they will not develop breast cancer in their lifetime (Haber 1660). 

To avoid these drawbacks, women often prefer to try another prevention method, such as surveillance, before undergoing such a drastic change with mastectomy (Haber 1660). In an effort to compare the results of prophylactic mastectomy versus regular surveillance, a study was done to show the likelihood of recurrence for those with a BRCA mutation (Meijers-Heijboer 162). The study found that there was no recurrence of breast cancer in the 76 women who had the mastectomy but eight of the 63 people who received regular surveillance had a reoccurrence of breast cancer (Meijers-Heijboer 162). 

Besides mastectomy, oophrectomy is the other primary surgical option which greatly reduces the risk of developing breast cancer. Oophrectomy is a surgery in which the ovaries are removed in order to reduce the amount of estrogen and progesterone in the body (ACS, 2010). Like mastectomy, oophrectomy can be both a prevention and treatment method for breast cancer. Risk-reducing salpingo-oophorectomy can reduce breast cancer risk by approximately 50% (Robson 159). Furthermore, oophrectomy can decrease the likelihood of ovarian cancer by 90% (ACS, 2010). 

While oophorectomy can significantly reduce the likelihood of developing breast cancer, it also has several drawbacks for a woman. From a physiological perspective, oophrectomy can increase the risk of cardiovascular trouble and osteoporosis (Haber 1661). Furthermore, it can cause sexual dysfunction and prematurely induce the negative symptoms associated with menopause. From a psychological perspective, a woman may be reluctant to undergo oophrectomy because it removes a vital component of her femininity. Because it does not complete eradicate the possibility of developing breast cancer, it may cause unnecessary psychological distress (ACS, 2010).  

In addition to surgical prevention and treatment options, another primary form of breast cancer treatment is chemotherapy. Chemotherapy aims to destroy cancerous cells that may have drifted from the breast region (NIH, 2010). For those women with early-onset breast cancer, chemotherapy is used after surgery but before radiation treatments (ACS, 2010). The effectiveness of chemotherapy can be influenced by an individual’s inherited gene variation which determines how a person is able to synthesize drugs in their body (NIH, 2010). Women with triple-negative breast cancers would be likely to benefit from chemotherapy (Morrow 162). Furthermore, women with a 10% chance of recurrence of breast cancer would be less likely to benefit from chemotherapy because the costs of undergoing chemotherapy treatments would be greater than the benefits (Morrow 157).
 

Similar to chemotherapy, radiation aims to eradicate cancerous cells that may be left in the breast region (ACS, 2010). Radiation uses high energy X-rays to kill cancer cells (NCS What). For women with early-onset breast cancer, radiation occurs after surgery in order to terminate any lingering cells that may be remaining (ACS, 2010). While radiation therapy has the potential to reduce breast cancer risk, it can also have lasting effects on the breast’s appearance which may make it less desirable as a treatment option (NCS, 2010).

 In addition to chemotherapy and radiation, hormone therapy is often used to supplement surgery in eradicating remaining cancerous cells (ACS, 2010). Because breast cancer develops due to elevated hormone levels, hormone therapy aims to inhibit growth by preventing hormones from reaching breast cells (ACS, 2010). Therefore, hormone therapy is used where woman has estrogen receptor-positive breast cancer as estrogen fosters cancerous cell growth in the breast region (NIH, 2010). 

While various hormone therapies are available, they are often used in correspondence with selective estrogen receptor modulators (hereinafter SERMs) which prevent estrogen from binding to its receptor and therefore prevent the growth of cancer cells (NIH, 2010). One such drug, tamoxifen, has been approved by the FDA to prevent breast cancer (NIH, 2010). Because tamoxifen can reduce the risk of ER-positive breast cancer, it is often used to prevent breast cancer from further metastasizing or spreading to the other breast (Cuzick 299; NCS, 2010). Because BRCA-induced cases of breast cancer tend to be ER negative, tamoxifen may only have a modest benefit for genetic cases of breast cancer (Duffy 218).   

VII. Conclusion 


To understand the type of coverage that a health insurance company would be expected to provide, the biological characteristics of breast cancer indicate the unique information about the risk, detection, prevention and treatment. Because breast cancer is a multifactorial disease, various biological and lifestyle factors can contribute to its development. Although genetic breast cancer accounts for only a small proportion of the total number of breast cancer cases, these cases tend to occur early on in life making detection and prevention crucial to reducing the likelihood that cancer will develop. While many potential breast cancer susceptibility genes have been identified, BRCA1 and BRCA2 convey the highest risk for breast cancer. Therefore, by understanding the biological characteristics of BRCA-induced breast cancer, women with a genetic predisposition can pursue a variety of prevention and treatment methods.  Considering the possible risk factors presented in this chapter, the next chapter will address the clinical procedures for risk assessment and genetic testing for breast cancer. 
Chapter 3: Risk Assessment and Genetic Testing for Breast Cancer

I. Background 


In addition to the biological characteristics of breast cancer, the intricacies of risk assessment and genetic testing for breast cancer also impact the cost of breast cancer treatment and the coverage a health insurance company is able to provide. While several potential gene mutations have been shown to convey breast cancer risk, genetic testing for breast cancer specifically refers to BRCA1 and BRCA2 testing which convey a significantly higher breast cancer risk (Foulkes 1248). Although there is currently no standard procedure for recommending someone for BRCA testing, many people utilize genetic counseling resources prior to having a BRCA mutation test (NCI, 2010). In 2005, the USPSTF recommended referral for genetic counseling and evaluation for BRCA testing for women with a family history that suggests an increased likelihood of a BRCA mutation (US Department of Health, 2010). 

Genetic counselors gather personal and family medical information and use risk assessment tools to determine an individual’s risk of developing breast cancer (NCI, 2010). Based on the estimated level of risk, the genetic counselor can then provide guidance and support for an individual in deciding a course of action for monitoring, detecting or preventing breast cancer (NCI, 2010). If the genetic counselor deems an individual’s risk of developing breast cancer to be high, the counselor can recommend that the individual or a family member obtain BRCA testing to better quantify the risk of developing breast cancer (US Department of Health, 2010). By determining an individual’s risk of developing breast cancer, women can proactively utilize treatment methods and prevent the cancer from actually progressing (Armstrong 564).
II. Mathematical Risk Assessment for Breast Cancer 

Since researchers have made significant progress in identifying the pathology and corresponding prognosis for various forms of breast cancer, many women seek to determine their individual risk for developing the disease.  In addition to the risk factors mentioned in Chapter 2, genetic counselors use mathematical models to quantify an individual’s risk of developing breast cancer. Currently, health care agencies can collect epidemiological, demographic and hereditary information to predict an individual’s risk of developing breast cancer over time and likelihood of having a BRCA mutation (Evans Breast 2). Even though this information can only provide an estimation of developing the disease, studies have shown the effectiveness of utilizing such models in a clinical setting.  While many models for assessing breast cancer risk exist, the Gail, Claus and BRCAPRO models are among the most prominent that have been proposed (Euhus Understanding 224). Because all of these models consider different factors, each model applies in particular circumstances and has overall strengths and weaknesses in its approach. Based on its applicability to family history, the BRCAPRO model is the most appropriate model for this analysis. 

Although various models have been developed to assess breast cancer risk, the most renowned is the Gail model (Euhus Quantitative 2). The primary objective of the Gail model is to determine whether a woman of a particular age and with specific risk factors will develop breast cancer (Gail). In the original Gail model, the risk factors include: age at menarche, age at first live birth, number of previous biopsies, and the number of first-degree relatives with breast cancer (Gail).
 Revised versions of the Gail model have been developed which also include factors such as race, personal history of atypical ductal hyperplasia, and updated population rates of breast cancer (Armstrong 567).
 Through providing information on these factors, the Gail model calculates the relative risk of an individual to develop breast cancer (Evans 4). Relative risk is used to calculate the risk of an individual with risk factors compared to members of the general population (Euhus Understanding 1).

Due to its widespread use and confirmed accuracy, the Gail model has many strengths which validate it as a model for determining an individual’s breast cancer risk. Because the Gail model takes into account various nongenetic factors, it best serves as a tool for general risk assessment (Euhus Limitations 24). Although the Gail model only includes first degree relatives as a measure of family history, it can accurately predict breast cancer for most women (Euhus Limitations 27). Numerous validation studies have revealed that the Gail model is particularly effective in assessing risk for women who undergo regular mammograms (Armstrong 567).
 Furthermore, the Gail model has accurately predicted the incidence of breast cancer across large populations (Euhus Quantitative 3). Based on its strengths, the Gail model is most appropriate to use for general breast cancer assessment (Armstrong 567). 

Although the Gail model may be applicable in several situations, it has drawbacks which prevent it from being used in certain cases. The primary drawback of the Gail model is that it considers mostly nongenetic factors and therefore, underestimates the risk that women with a strong family history have (Evans 4; Crispo 225). Specifically, the model does not include valuable background information such as: age at which breast cancer was diagnosed, cases of bilateral breast cancer, family history of ovarian cancer and second-degree relatives with breast cancer family members (Euhus Limitations 24). Another limitation of the Gail model is that it approximates the degree to which each of the risk factors contributes to breast cancer onset, which is not known with certainty (Gail). As a result, the Gail model has been shown to overestimate the risk for women over fifty and women who had their first child under the age of twenty (Euhus Understanding 229). Lastly, the Gail model may overstate the risk of younger women having breast cancer because they do not regularly undergo mammographic screening (Armstrong 567). 

In addition to the Gail model, another frequently used model for assessing breast cancer risk is the Claus model. The Claus model primarily aims to determine the risk of developing breast cancer in cases where there is positive family history (Claus 644).
 The specific risk factors considered in this model include: age, number of first and second-degree relatives with breast cancer history, and age of onset of breast cancer in family (Evans Breast 3). While the Gail model provides an individual’s relative risk, the Claus model calculates the likelihood of an individual developing breast cancer over time in a percentage form. Although it considers different factors, the Claus model can produce similar risk assessment predictions as the Gail model for women who have a first-degree relative with a history of breast cancer (McGuigan 1315). However, the two models mostly yield different results because they do not take into account the same risk factors (McGuigan 1315). 

Because the Claus model mainly considers family history, it is an appropriate to use when determining the risk of women who have a high risk of developing breast cancer (Claus 648). In particular, the Claus model applies to women who have at least one first or second-degree relative with a history of breast cancer (Armstrong 567-8). When providing information regarding risk factors in the Claus model, family inheritance patterns of the disease become apparent (Euhus Understanding 230). This information can be valuable in researching the genetic basis for breast cancer. Furthermore, the Claus model provides valuable information regarding the predicted age of onset of breast cancer (Euhus Understanding 230).

Although the Claus model can be an effective tool for assessing the risk of high-risk women, it has several drawbacks which inhibit it from being used in certain circumstances. The primary limitation of the Claus model is that it is narrow in its scope and does not include any of the nonhereditary risk factors (Evans Breast 4). Therefore, it only applies to women with a first or second-degree family history of breast cancer (Euhus Limitations 25). Because most women who develop breast cancer in the general population do not have a family history of the disease, the Claus model tends to underestimate the incidence of breast cancer in the general population (McGuigan 1316). 

Even though the Claus model is most applicable in cases of positive family history, it does not consider several relevant hereditary factors which could impact an individual’s risk of developing breast cancer. Specifically, it does not consider history of bilateral breast cancer and male family members with breast cancer (Euhus Understanding 224; Evans Breast 3). Furthermore, discrepancies in the Claus model calculations result from using tables compared to computer programs (Evans Breast 4).
 Tables typically yield significantly higher risk levels than computer programs, which adjust based on the number of unaffected relatives there are in the family (Evans Breast 4). 

Besides the Gail and Claus models, the BRCAPRO model is another primary model used in assessing breast cancer risk. The BRCAPRO model is a Bayesian model which calculates individual probabilities of breast cancer risk over time based on the probability that the individual is a BRCA mutation carrier for the disease (Euhus Understanding 228).
 The BRCAPRO model first determines the probability of possessing a BRCA mutation and then refers to incidence curves for mutation carriers and non-carriers over time (Euhus Quantitative 3). The BRCAPRO probability is calculated by determining the “prior probability” risk, or the risk of having the BRCA mutation in certain population, and the “posterior probability” risk, or the risk given an individual’s family history of cancer, and compares them to the incidence curves for breast cancer (Euhus Understanding 228).
  

Like the Claus model, the BRCAPRO models aims to determine an individual’s risk level for developing breast cancer based on family history of the disease (Parmigiani 145). However, the BRCAPRO model requires that a complete family history is recorded.
 The risk factors in the BRCAPRO model include: ages of family members, medical history of first and second-degree relatives, age of onset of cancer, bilateral breast cancer, family history of ovarian cancer, history of oophorectomy and male breast cancer (Evans Breast 3). 

Because the BRCAPRO model expands upon the strengths of the Claus model, it can be a valuable tool in assessing an individual’s risk of developing breast cancer.  In addition to providing information for family members afflicted with cancer, BRCAPRO contains information regarding unaffected family members as well, which can give a more accurate estimation of the incidence of breast cancer in a family (Evans Breast 5). Despite this benefit, the greatest contribution of the BRCAPRO model is that it calculates a risk of possessing a BRCA mutation. While mutation risk is beneficial for predicting the likelihood of individual developing breast cancer, it also is useful in a clinical setting to provide patients with a more complete genetic counseling assessment (Parmigiani 146). Furthermore, although there are a limited number of validation studies conducted on BRCAPRO model because of its more recent development, preliminary studies have rendered it superior to other Mendelian models in determining assessing BRCA mutation risk (Euhus Quantitative 4). Studies have also shown that the BRCAPRO model is consistent with similar rates of accuracy across different populations which further contributes to its validity as a model (Euhus Understanding 229).
 

Despite its innovative approach and reliability, the BRCAPRO model does have limitations which prevent it from applied in all clinical settings. Like the Claus model, a major limitation of the BRCAPRO model is that it does not consider any nonhereditary factors (Evans Breast 5). Consequently, BRCAPRO typically underestimates an individual’s risk of developing breast cancer because a relatively small percentage of people with breast cancer have a family history of the disease and an even smaller subset actually have the BRCA mutation (Euhus Understanding 229). 

Another drawback of the model is that it only considers BRCA1 and BRCA2 mutation risk although other genes may be linked to breast cancer as well (Parmigiani 145). Furthermore, because individuals have to provide extensive family histories, a significant drawback of implementing BRCAPRO modeling in risk assessment clinics is that it is time-consuming to complete (Euhus Quantitative 5). Lastly, the validity of the BRCAPRO model is contingent on accurate information regarding the likelihood of BRCA mutations in a given population (Euhus Understanding 228).
 Because this information is not often available or verifiable from a credible source, the estimated risk may be inaccurate (Euhus Understanding 228). 

Although each model contributes greatly to an individual’s assessment of breast cancer risk, all three models are limited because they fail to take into account other valuable risk factors in developing breast cancer. For example, these models overlook breast density as a risk factor which has been shown to increase the risk an individual to develop breast cancer (Crispo 226). Moreover, none of the models consider potentially related lifestyle factors such as obesity, diet, amount of exercise, and amount of alcohol consumption (Evans Breast 2). Further research of these lifestyle links could possibly lead to their inclusion in the models in the future. 

Furthermore, because the models consider different risk factors, they are limited by fact that they are not always consistent with each other. In a case where a woman has a strong family history of breast cancer in her family, she would be more likely to show an elevated risk in the Claus or BRCAPRO models (Friedenson). On the other hand, compared to the other models, the Gail model consistently overestimates the risk of developing breast cancer for a woman over fifty with at least two breast biopsies as well as a woman who first gave birth before age twenty (Euhus Understanding 229). Moreover, it is important to note that because these models deal with different risk levels, they should not necessarily be compared to one other, but rather should be used to complement each other and present a full risk assessment (McGuigan 1316). 
Based on the concern of consistency of the various models, the Gail, Claus and BRCAPRO models are limited further because of uncertainty in breast cancer research. Because these models can not determine with full confidence if an individual will actually develop breast cancer, genetic counselors have to treat information obtained from these models delicately when interacting with patients. Furthermore, because genetic counselors may be presented various risk levels (based on the differences in the models), “clinical judgment” is critical for the success of the treatment (Domchek 600).
 The interpretation of the results from the models may be different considering the timing which genetic counselors choose to present patients with information about their risk levels (Weitzel 1327). Because many patients have psychological concerns about undergoing certain treatment methods, a patient may opt not to not pursue proactive treatment even with a high risk level for possessing a BRCA mutation or developing breast cancer (Weitzel 1325). 

Despite the vast contributions of the Gail and Claus models to assessing breast cancer breast cancer risk, BRCAPRO model is used in this analysis. While the Gail model is a highly valuable and well-known model for measuring nonhereditary cases of breast cancer, BRCAPRO provides a more accurate risk assessment for individuals with a family history of breast cancer (Euhus Quantitative 3). Although the Gail and Claus models are empirical models, the BRCAPRO model is Mendelian and based on the laws of genetic inheritance rather than solely considering observational data (Euhus Quantitative 3).  The BRCAPRO model seeks to determine the incidence of breast cancer based on the probability of possessing a genetic mutation. Above all, the BRCAPRO model best applies to this study, because it provides a concrete risk probability of the BRCA mutation. 
Although various health care clinic use different models to assess the risk of possessing a BRCA mutation and/or developing breast cancer over time, CancerGene is a software tool used to calculate the risk probabilities of breast cancer featuring prominent mathematical models (Euhus Understanding 224). Through inputting family history and relevant epidemiologic and demographic factors, CancerGene depicts the risk of developing breast cancer over time for the Gail, Claus and BRCAPRO models.  Once family history information has been entered into CancerGene, the software produces a pedigree image indicating various medical conditions and ages for individual family members. When calculating Gail model probabilities, CancerGene includes the original factors as well as race and personal history of atypical ductal hyperplasia and lobular carcinoma in situ (Euhus Understanding 227). Through this interface, the mathematical models can be calculated easily and accurately while providing a helpful visual representation of risk over time. 

III. Genetic Testing 

Subsequent to obtaining the results of mathematical risk assessment, a genetic counselor can recommend that an individual or family member undergo BRCA testing to determine whether he or she actually has the BRCA mutation (US Department of Health, 2010). Although the accepted threshold for recommending BRCA testing was 10% based on the results of the mathematical models, the American Society of Clinical Oncology removed this restriction in 2003 to leave recommendation within the jurisdiction of the genetic counselor or other health professional (Petrucelli). If the health professional recommends an individual for genetic testing, a blood sample is obtained and sent to a laboratory for further DNA analysis (NCI, 2010). 

Historically, there has been a monopoly over genetic testing for breast cancer. While many sources contributed to the identification of the BRCA genes in the early 1990s, Myriad Genetics, Inc. was granted patent rights which include the rights over certain sequence of the gene as well as rights over methods for analyzing mutations on parts of the genes (Matloff 5; Association for Molecular Pathology 79, 82). Originally, Myriad offered a BRCA mutation genetic test named Comprehensive BRACAnalysis which provided complete sequencing of these genes (Association for Molecular Pathology 55).  Through the development of virtual technology, Myriad later developed the BRACAnalysis Rearrangement Test which reveals rearrangements in the genetic sequence for the BRCA genes (Association for Molecular Pathology, et.al. v. United States Patent and Trademark Office, et.al. 55). 

Despite the many positive benefits that BRCA genetic testing has yielded over the last decade, Myriad’s patent rights have been pinpointed to potentially hinder society by having monopoly over the cost of genetic testing for breast cancer. While BRCA testing in 1998 cost about $1,600, it was estimated to cost about $3,100 in 2007 (Matloff 5). Furthermore, Myriad’s monopoly power has been believed to impede further development of scientific technology in genetic testing for breast cancer by reducing competition (Matloff 5). Based on this finding and others, the United States District Court in the Southern District of New York has recently ruled to withdraw this patent on the basis that it unconstitutional to patent a scientific product derived from nature (Association for Molecular Pathology 97-8). Therefore, although Myriad has historically held a patent for BRCA genetic testing, this new court finding will hopefully reduce the cost of breast cancer testing and develop genetic testing for breast cancer with greater precision. 

After DNA analysis has been performed, a BRCA genetic test can reveal a positive, negative or ambiguous result (NCI, 2010). If  the test reveals a positive BRCA mutation, it usually conveys that an individual has inherited a deleterious mutation and therefore has an elevated risk for developing cancers associated with the BRCA genes including breast cancer (NCI, 2010). Such results may prompt family members to obtain BRCA testing as well to determine whether they have inherited the mutation (NCI, 2010). Although possessing the mutation infers an increased risk of breast cancer, the individual will have a choice to pursue prophylactic treatment which could reduce the likelihood of actually developing breast cancer (US Department of Health, 2010). Such prophylactic treatment methods would likely include prophylactic surgery, chemoprevention and surveillance (Palma 12-5).   

Although a BRCA genetic test may yield a negative result, it can not necessarily be concluded that the individual is without a BRCA mutation. For example, if an individual obtains a negative result and a family member has not tested positive for breast cancer, the results of the BRCA testing may be considered “non informative” (Palma 11). In this instance, an individual may possess a mutation but it was not detected in the test (NCI, 2010). On the other hand, if other family members have tested positive for BRCA and an individual’s tests results are negative, a “real negative” result is obtained (Palma 10). In this instance, the individual possesses the same risk for breast cancer as a member of the general population (NCI, 2010).  If the BRCA genetic test yields an ambiguous result, there is a difference in the BRCA gene sequence that has not been researched extensively to convey breast cancer risk (NCI, 2010). 

IV. Conclusion 


To build on the biology of breast cancer presented in Chapter 2, this chapter addresses how health care professionals assess breast cancer risk. Prior to actual genetic testing, individuals may choose to undergo risk assessment by a genetic counselor or other health care professional. When deciding an individual’s eligibility for BRCA testing, a health care professional will likely utilize mathematical models to quantify risk.  Although the Gail, Claus and BRCAPRO models have all been utilized greatly, the BRCAPRO model applies best in this analysis because it can provide a concrete risk for a BRCA mutation. 

After being referred by a genetic counselor or physician based on risk assessment, an individual can receive BRCA genetic testing. While Myriad, Inc. has traditionally held a monopoly over providing this test, a recent court ruling has granted that this genetic information is not patentable. As a result, the cost of genetic testing for breast cancer is expected to decrease. Based on the results of the genetic test, individuals may choose to pursue various detection or prevention methods for breast cancer. Using the insights from the biological characteristics of breast cancer, risk assessment and genetic testing, the next chapter provides an economic analysis of the effects of Title I of GINA on genetic testing for breast cancer. 
Chapter 4: Economic Analysis of Title I of GINA
I. Background 


In light of the biological characteristics, risk assessment and genetic testing of breast cancer, the focus of this work will be an economic analysis of the implications of Title I of GINA on an insurance company. Modeling the premium chosen by a profit-maximizing insurer enables the exploration of the monetary repercussions of providing insurance coverage to a woman predisposed to genetic breast cancer under GINA.
 Although genetic breast cancer composes a relatively small proportion of breast cancer cases, its increasing importance in understanding breast cancer prognosis makes it vital to comprehend (Carroll 1691).
 Furthermore, the United States spends approximately $7 million dollars annually on breast cancer treatment costs and earlier diagnoses have been found to significantly reduce the costs of breast cancer treatment (National Committee for Quality Assurance [NCQA], 2010). 


In addition to the growing prevalence of cancer and associated costs as well as the ability to accurately assess an individual’s risk, the response of health insurance companies to provide coverage to these individuals has become increasingly controversial. As health insurance premiums continue to rise, insurance companies which are striving to earn profits have been portrayed as the source of this increase (Kaiser Health News, 2010). Therefore, laws like GINA have been enacted to restrict an insurance company’s ability to use genetic information to charge higher premiums to those who are genetically predisposed to cancer. 


Although much debate exists on this topic, relatively little attention has been given to the effects that GINA legislation would have on the insurance industry. Therefore, to understand the implications for the health insurance industry, this analysis considers the perspective of a single insurance company using historical data about breast cancer. The analysis looks specifically at the effect of GINA on a hypothetical insurance company and predicts the likely outcome when GINA is enacted. 
II. Two scenarios 


In an effort to understand the economic implications of GINA, two possible scenarios must be considered. The first scenario is a situation in which the insurance company has complete access to genetic information and is able to price discriminate based on this information. The second scenario is a case where the insurance company is unable to price discriminate. This model assumes that either the insurance company does not have the information available or if it does, it is unable to use this genetic information to underwrite its policies. While realistically an insurance company may circumvent these rules to limit, deny coverage or charge higher premiums, this model assumes that the insurance company will not use genetic information against an individual and therefore will not price discriminate (Rothstein Genetic Exceptionalism 29). Furthermore, this model only considers the perspective of the insurance company and therefore considers any possible discrimination by employers to be negligible. 
III. Risk groups 


Although genetic information in GINA refers to the results of an actual genetic test which analyzes the DNA mutation for breast cancer, this analysis uses the results from the mathematical model BRCAPRO as an indication of women’s risk for breast cancer (“The Genetic Nondiscrimination Act of 2008,” Title I, Sec. 101). While BRCAPRO only indicates the possibility of BRCA mutation and therefore would not be considered genetic information in itself, it is necessary information to precede BRCA testing which can be used by insurers. Because this analysis aims to provide a conservative estimate of the effects of GINA on an insurance company, it did not use the actual results of the BRCA mutation testing so as to not overstate the prevalence of such mutation in the population.  

To illustrate the economic effects of GINA on the insurance company, this model assumes that there are only two types of risks that an insurance company is confronted with: low-risk and high-risk for genetic breast cancer.
 Using the CancerGene software, the model differentiates between these two different risk groups. Although the rationale for risk pooling in the model differs from the actual insurance industry, it effectively compares the risk of those with a high risk of genetic predisposition to breast cancer to the rest of society. 

The first group considered was the low risk or “General Population Risk Group.” To represent the risk level of individuals in the general population, the family history of a sample woman with a low risk for breast cancer was entered into CancerGene. The sample woman for this group was a 30 year-old woman with a large extended family and no family history of breast cancer or other BRCA related cancers.
,
 As shown in Figure 4.3.2, the BRCAPRO calculations reflected that the risk of this sample woman possessing a BRCA mutation would be .001 or 0.1%. Because the actual likelihood of possessing a BRCA mutation for a member of the general population is approximately 0.1-0.5%, the model accurately reflects the fact that a sporadic mutation in either gene is extremely rare (Pasche 1). 
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Figure 4.3.1: The CancerGene Pedigree for a Sample Woman from the General Population
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Figure 4.3.2: The CancerGene BRCAPRO Results of the Sample Woman from the General Population

In addition to the general population risk group, the model includes a “High-Risk Group” comprised of women who had a familial history of breast cancer. As a representation for the high risk group, a sample woman with a strong family history of breast cancer was entered into CancerGene. Specifically, the sample woman had a family history of breast cancer on her mother’s side, with her grandmother afflicted with early-onset breast cancer at age 35 and her mother having early-onset breast cancer at age 39 with recurrence at age 46.
 Although the sample woman has a strong family history of breast cancer, she does not have family history of any other BRCA related cancers. Because women with a BRCA mutation typically develop early-onset breast cancer, this model accurately reflects a family history which strongly suggests such a mutation (Peto 943). 
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Figure 4.3.3: The CancerGene Results for a Sample Woman from the High-Risk Group
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Figure 4.3.4: The CancerGene BRCAPRO Results for the Sample Woman from the High-Risk Group

Furthermore, the BRCAPRO calculations in Figure 4.3.4 reflect that the risk of this sample woman possessing a BRCA mutation would be 0.317 or 31.7%. Although this woman’s risk of mutation is significantly greater than the general population group, she does not represent even the most extreme high-risk cases of breast cancer. For example, if a different high-risk woman has a similar family history but her mother actually tested positive for the BRCA mutation, she could have a 0.49 possibility of inheriting such a mutation. Furthermore, if the woman herself abided by the 10% threshold for recommendation of BRCA testing and actually tested positive for the mutation, she would have about a 0.99 probability of mutation. Therefore, although the probability of possessing a BRCA mutation for the high-risk group may seem unrealistically high, it is actually fairly conservative considering the risks that an insurance company may face when providing coverage to BRCA mutation carriers.            

IV. Insurance

In view of an individual’s risk of developing breast cancer, a health insurance company places an individual in a group of people who have comparable risks. When calculating the price to set the premium for the group, an insurance company uses medical underwriting where prospective clients are asked to disclose particular medical information about themselves and their family members (National Association of Health Underwriters [NAHU], 2010). By using computer software, insurance underwriters input medical information to ensure that an individual’s risk can be covered by the insurance company and will not result in a loss (Bureau of Labor Statistics [BLS], 2010). Because health insurance companies are private businesses, they are responsible for generating profits to pay their stockholders (Kass 6). Through underwriting, insurance companies are able to generate profits by manipulating premium prices to earn revenues (BLS, 2010). 


Although determining health insurance premiums is an extremely complex procedure, the models used in this analysis simplify the process to more clearly illustrate the effects the breast cancer predisposition on premium pricing. A clear example of this process can be seen in the premium pricing for the general risk pool. When the price of the premium is low, most prospective clients in the health insurance market will choose to purchase insurance. At this premium level, there will be a great number of clients contributing money to the insurance company. However, because of the high number of clients, there will also be more sick clients in the population most likely resulting in greater expected costs for the insurance company. As a result, only modest profit generation occurs at the low premium.   Furthermore, at a low premium, the risk pool is comprised of healthy and unhealthy people because the both groups are willing to purchase health insurance at a low price.
On the other hand, if the premium is high, fewer prospective clients will choose to partake in the insurance market but they will pay significantly higher premiums per person. Because of the reduced number of clients, the insurance company has to cover less people and a smaller number will become sick resulting in relatively low costs. As a result, the profit generation at the high price level is likely to be modest at well. When the premium is high, the prospective healthy clients will choose not to purchase insurance so the market will primarily consist of unhealthy clients.  
Because premium, cost and number of clients are the key determinants of profits, an optimal premium can be reached where an insurance company maximizes its profits. As shown in Figure 4.4.1 below, profits reach an optimal level shown in the peak of the histogram. This optimal point reflects the price at which clients have to pay to completely cover costs while earning the maximum possible profits. 
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Figure 4.4.1: Histogram of 100,000-Repetition Monte Carlo Simulation for High-Risk Group
Although determining the optimal profit for an insurance company is vital to understanding where to set the premium, it is also important to consider the standard deviation (SD) from this optimal point. For any list of numbers, a standard deviation represents the dispersion from the mean (Jaedicke 919).
 For a variable that follows a normal probability distribution, about 68% percent of the values lie within one SD from the mean (Anderson Basic 88). When the standard deviation is larger, the spread of values from the mean is larger (Jaedicke 919). In the case of an insurance company, a higher standard deviation means greater volatility in returns.  
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Figure 4.4.2 Normal Probability Distribution with Small Standard Deviation 
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Figure 4.4.3 Normal Probability Distribution with Large Standard Deviation         
Considering the role of standard deviation in the context of health insurance, an insurance company sets a premium at which, it expects to earn the maximum level of profits. Because the insurance company can only estimate expected revenues and costs, it does not know with certainty how a change in premium will necessarily affect a change in profits.
 Therefore, the insurance company will inevitability deviate, in a single year, from the average maximum of profits. In a stochastic model, the insurance company runs a series of repetitions on a premium to determine what would be the expected distribution of profits in a given year. Based on these distributions, the insurance company determines a premium at which it can earn its optimal level of profits. 

By observing the variability in profits between repetitions, the insurance company is able to foresee the type of volatility in profits it can expect in a given year. For example, although a premium of $3,000 may on average provide near $5.8 million in profits per year, it also may yield higher or lower numbers such as $7.7 million or $4.3 million in a given year.
 By providing the insurance company with more information about the individual risk of its clients, it is able to more accurately estimate the premium for the entire risk pool and set a premium which would maximize profits. Therefore, when an insurance company is able to distinguish between the high and low risk clients, it chooses to undertake a lower level of risk and will have a smaller standard deviation from the optimal profits.

While a higher spread of values can result in earning much higher profits than the insurance company otherwise would, the insurance company also runs the risk of deviating much further from optimal profits and earning significantly lower profits. Because insurance companies want to reduce the likelihood that they will incur substantial losses, they aim to accurately assess risk to know with the greater certainty the optimal profits that they can generate. 
Considering this simplified framework, the expected implications of GINA become apparent. Because of the enactment of GINA in 2008, health insurance companies are no longer able to collect individual or family medical history to use for underwriting purposes for individuals in group health plans (“The Genetic Information Nondiscrimination Act of 2008”). As a result, individuals are able to withhold information that would allow insurers to better assess the actual health risks they impose. Therefore, as the insurance company undertakes a high level of risk, the deviation from the average optimal level of profits becomes greater.
 Because GINA mandates that health insurance companies undertake health risk with great uncertainty, insurance companies will be compelled to share risks across its clients and alter the premium price accordingly. In a problem known as adverse selection, the higher premium price will deter healthy people from participating in the market by forcing healthy people to pay for the health risks of unhealthy people (Cutler 434). As a result, the optimal profit will be less under GINA. 
V. The Model without GINA

To understand the economic impacts of GINA, the model aims to determine the profit of the insurance company under the two scenarios.  In this section, the rationale of the model created in Excel is explained. Furthermore, the components of the model are explained for the general population group first and then how they were adapted for the high-risk group. Due to the mathematical complexity of actuarial calculations, this model uses a simplified formula for calculating the profits. According to Folland, et. al’s description of insurance supply, the formula that insurance companies use to generate profits is simply: profit = revenues-costs (Folland 162). Using this formula as a framework, the components of the model are described below. 

1) Premium 

To determine the revenue under these two scenarios, the insurance company must determine where to set the premium paid by its clients.
 When establishing the premium that it will set for its clients, an insurance company considers the amount that it anticipates to spend on an individual’s coverage (Rosett 282). The primary purpose of Cell B2 in Figure 4.5.1 is to reflect the premium that an insurance company charges at a given time. As shown in Figure 4.5.2, the premium is a vital calculation to the whole worksheet as it is the primary determinant for the number of clients who choose to purchase insurance.
 Because the risk groups have different average premiums, the optimal premium for the general population and high-risk groups is considered separately. 
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Figure 4.5.1: General Population Risk Pool
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Figure 4.5.2: Corresponding Formulas for General Population Risk Pool
In an effort to determine the premium to charge each risk group, it is important to consider what types of clients comprise each risk pool. By determining whether someone expects to require significant amount of medical care, an insurance company would be able to predict at which premium people would be willing to purchase or refuse insurance. To illustrate this point, the average premium for employer-based insurance was used to represent the average premium of someone in the general population. This is an accurate benchmark for the general population premium because employer-based insurance currently accounts for approximately five-sixths of the total health insurance market. Therefore, when representing the health insurance pool for the general population, most people will be on an employer-based plan (Congressional Budget Office [CBO], 2010).  Based on this rationale, the average premium was $3,200 for the general population group (CBO, 2010). 

While most people would fall in the categorization of the general population, individuals in the high-risk population would be unable to receive employer-based insurance. This model reflects a world in which insurance would still largely be purchased in group plans from employers. In this situation, the employer would not be legally required to provide the high risk individual with health insurance and therefore these individuals would not be able to receive coverage on the group plan used by their employers. Rather, they would have to purchase their health insurance individually on the market which is more expensive. Therefore, for the high-risk group, the average premium was $5,500 (CBO, 2010).
  

Based on the average premiums determined for these two risk groups, A and B (Cells B4 and B5 in Figure 4.5.1 for the general population) were used as parameters of a stochastic insurance market model for these groups. A and B are the values which affect the deviation from the optimal premium. Through this function, parameters A and B, along with the chosen premium amount, determine the number of individuals in the client pool for each specific population. 

2) Number of Clients 


Based on the given premium set in Cell B2, a certain number of clients will choose to purchase or refuse insurance. To illustrate this point, Column C in Figure 4.5.1 considers an individual’s likelihood of purchasing insurance. As a general rule of demand, more people are willing to purchase insurance when the price is low and less people are willing to purchase insurance when the price is high. The parameters of the model reflect this principle and consequently, less people are expected to purchase insurance as the premium increases. 

Column C of Figure 4.5.1 displays the list of clients for the general population. This column is 50,000 cells long, representing a population of 50,000 people who are in the insurance market for purchasing health insurance.
,
 Cell C2 in Figure 4.5.2 displays the formula used for this equation, =IF(RAND()<a-b*Premium,1,0). Parameter A (Cell B4 in Figure 4.5.2) was set at 1, because Excel’s uniform distribution produces random numbers on the interval from 0 to 1. Parameter B (Cell B5 in Figure 4.5.2) for the general population was set at 1/6400. This assumes that the maximum that anyone in the general population market is willing to pay for insurance is $6,400.
 Because the value of parameter A was set at 1 and the maximum premium is $6,400, the value of B is equal to 1/6400. Using the parameters A and B (Cells B4 and B5, respectively), the number of clients in the general population can be determined.
 


In addition to the parameters, the decision to purchase insurance also contains a random element. As shown in Cell C2 of Figure 4.5.2, the formula contains a random function to represent the fact that there will be an element of unpredictability when people purchase insurance. For example, before searching the insurance market for the lowest price, an individual may rationally conclude that he or she is willing to purchase any insurance that is $3,000 or less. While it seems reasonable to assume that most people in this position would jump at the chance to buy an insurance policy that sells for $1,000, there still is the likelihood that a person may not choose to buy insurance on this day for any particular reason (i.e. wants to verify the purchase with a spouse, does not have all documentation ready to make the purchase, etc.). 

Thus, this model incorporates a random element which influences whether the individual decides to purchase insurance. When the individual decides to purchase insurance (i.e. the number is less than parameters of the premium indicated by A and B), then the client is assigned a “1”. On the other hand, if the individual decides not to purchase insurance, the client is assigned a “0”. Cell K1 in Figure 4.5.2 totals all the clients (or 1’s) in the 50,000 person population. Despite random discrepancy, most individuals in the insurance market will tend to purchase insurance when the price of the premium is low. 

Similar to the general population risk pool, the high-risk population pool uses basic demand theory to determine whether individuals in the market will purchase insurance. Therefore, like the general population pool, the number of clients in the high-risk population pool will likely decrease as the premium increases. As shown in Figure 4.5.4, the formulas for the high-risk population were the same as the general population pool.
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Figure 4.5.3: High-Risk Group
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Figure 4.5.4: Corresponding Formulas for High-Risk Group
However, because the average premium for the two risk groups differs, the parameters for determining whether individuals will become clients must also be different. Consequently, parameter B for the high-risk population was altered to accommodate the higher premium for people who are at high-risk for developing breast cancer. As shown in Cell B5 of Figure 4.5.4, parameter B for the high-risk population was 1/11000. 
 Because the maximum that someone in the high-risk population is willing to pay is higher than the general population ($11,000 versus $6,400), people are willing to become clients at higher premiums than in the general population group. 

As shown in Figure 4.5.3, Column D reflects the premium earned by the insurance company. The basic formula for calculating premium in Column D is =IF(Client=1,1000,0). In other words, the formula in Column D of Figure 4.5.4 reflects that premium is only earned if a person becomes a client. If a person chooses to become a client (the value in the cell to  the immediate left in Column C is a 1), then the amount of the premium for the group is reported.
 Based on the total number of clients who choose to purchase insurance in the market, Cell K2 in Figure 4.5.3 reflects the revenue of a given pool which is equal to the sum of the premiums.
 
3) Probability of developing breast cancer 


Although the number of clients who pay the premium multiplied by the premium itself determines revenue, several variables are taken to account when calculating estimated cost to the insurance company. The first of these considerations found in Cell F4 of Figure 4.5.1 is the probability of “becoming sick” or in this case, developing breast cancer. Because most people in the general population may possess various risk factors for developing breast cancer, it is difficult to assess an individual’s probability of developing breast cancer. For the purpose of simplification, the risk of developing breast cancer in this model was based solely on the probability of possessing a BRCA mutation. Specifically, the probability of developing breast cancer was based on the multiplication of two independent risks: the probability of possessing a BRCA mutation and the probability of actually developing breast cancer in a given time frame if the individual has such a mutation. 


To reflect this combined probability, Cell F4 in Figure 4.5.1 shows an individual’s risk of developing breast cancer. In Cell F2 of Figure 4.5.1, the probability of mutation is .001. This number was derived from the BRCAPRO modeling probability which generated an individual’s BRCA mutation risk based on their unique family pedigree.
 Although the data for the sample woman in the general population was used to represent the rest of the people in the population, people have varying levels of risk which can be entered in this cell.   

Furthermore, Cell F3 of Figure 4.5.1 reflects the fact that if a woman has the mutation, she has a certain risk of developing breast cancer within a time frame in her life. Because this model specifically considers breast cancer onset by a BRCA1 or BRCA2 mutation, it finds that the probability of developing breast cancer for a BRCA mutation carrier between ages 30-40 is 0.191 (Petrucelli).
 Although women face different probabilities of developing breast cancer, the risk of developing breast cancer for BRCA mutation carriers stays about the same. Based on an individual’s probability of possessing a BRCA mutation and developing breast cancer if she has the mutation, the probability of developing breast cancer (i.e. “Probability sick”) for the general population can be derived.


Considering the corresponding high-risk group shown in Figure 4.5.3, the probability of developing breast cancer is determined by the same factors. However, because BRCAPRO generated a 0.317 probability of possessing a BRCA mutation for a woman at high-risk, the probability of developing cancer will be higher. To reflect this, Cell F4 of Figure 4.5.3 shows that the probability of developing breast cancer for a 30-year old woman in the high-risk group was 0.060547 or about 6%. The risk for the 30-year old woman in the general population was only 0.000191 or about .02%.
  

4) Number of Sick Clients 


Based on the probability of developing breast cancer for a sample woman in the population, the number of clients who actually become sick in both risk pools can be determined.
 The basic formula for determining which clients actually becomes sick is =IF(AND(Client=1,RAND()<ProbabilitySick),1,0).
 The formula contains an IF(AND) formula because the random number generated is contingent on two conditions. The first condition states that the woman can only become a cost to the company if she is a client of this insurance company.
 Because the health status of people who do not choose to purchase insurance is irrelevant to the costs that the company will incur, the woman has the potential to become sick and have the company pay her medical expenses only if she is a client to this insurance company. The second condition for this formula is that the random number that is generated is less than the probability of becoming sick, reflected in Cell F4. Therefore, an individual in this population can only become sick if she is a client and is in the small percentage of people who actually become sick based on BRCA mutation. Similar to the calculation of “Client” in Column C, the women who become sick in Column G are denoted with a “1”. On the other hand, if the random number is greater than the probability of becoming sick, than the numerical value in Column G will be 0.
Because the formulas in Column G of Figure 4.5.2 contain the RAND function, it reflects the fact that developing breast cancer also contains a random element. Although a woman’s unique family history may be void of any trace of the breast cancer or a BRCA mutation, there is always a chance that an allele on this gene can mutate, causing this woman to develop breast cancer. Alternatively, although a woman may have a positive BRCA mutation confirmed by two generations of BRCA testing, there is still a likelihood that her DNA will randomly mutate, causing her to not inherit a deleterious BRCA allele. 


Based on the individual outcomes in Column G, the total number of people who develop breast cancer is determined. In Cell M1, the sum of the people who have breast cancer in the general population of 50,000 women is displayed. Because the overall probability of becoming sick is so small for the general population (Cell F4 of Figure 5), few people in the general population actually become sick. 


Although the rationale behind the high-risk population model is the same, there are a few important changes to note. Like the general population model, the formulas found in Column G of Figure 4.5.4 rely on the overall probability of becoming sick. However, because the probability of possessing a mutation is much higher for a woman who has a strong positive family history of breast cancer and/or a BRCA mutation, the probability of becoming sick, found in Cell F4 of Figure 4.5.3 reflects that the overall probability is much greater than the general population. Consequently, many more people who are at a high-risk level become sick compared to the general population.
 

5) Loss incurred by the health insurance company


Based on the individual outcomes of sickness found in Column G, the model predicts the estimated cost that the insurance company is expected to incur. The basic formula for the medical cost of a woman with breast cancer is =IF(SICK=0,0,NORMALRANDOM(30000,8000)). In other words, if a cell in Column G is equal to 0 then the cost reflected in the corresponding cell is 0.
 However, if the cell in Column G is not equal to 0, the corresponding cell in Column H is assigned a number from a NORMALRANDOM distribution centered around $30,000 with a standard deviation of $8,000. 

Although a wide range of treatment methods of breast cancer exist, this model considers the expected costs for a woman who develops breast cancer due to a BRCA mutation. The cost of treatment used in this analysis was modeled off of Anderson, et.al’s (2006) analysis of the cost-effective treatments for BRCA1 and BRCA2 mutation carriers.
 Anderson , et. al. included the cost of prophylactic mastectomy and oophrectomy, chemoprevention, and surveillance as the preferred treatment regimen for an individual.
  Assuming that the psychological considerations are negligible in a woman’s decision of treatment, the model assumes that all women with a high-risk of developing breast or who have already been diagnosed utilize treatment methods which are most effective in reducing a woman’s risk of developing breast cancer (Haber 1660). Based on Anderson, et.al’s data, the cost of treating an individual’s case of breast cancer would be on average approximately $30,000 per year.
,
  Because many of the common treatment methods were within the price range of $22,000-38,000, the standard deviation was set at $8,000. The average cost includes the first year of treatment and a year of continuing care.
 Furthermore, the costs associated with breast cancer include anticipated inpatient hospitalization, genetic counseling and screening, outpatient visits, chemotherapy treatments, and surgery (Fireman). Because the treatment costs for members of the high-risk population would be the same, Column H in Figure 4.5.4 mirrors that of the general population.  

Despite these hypothetical predictions, the actual cost of treating breast cancer would depend on whether someone develops invasive versus in situ cancer (Fireman). While the costs would most likely be near $30,000 for the initial year of treatment, there would be follow-up costs of approximately $7,700 annually for preventing the recurrence of breast cancer.
 Therefore, although the cost of covering these women would be high the first year of coverage, they would most likely require significantly less medical treatment the subsequent years if effective treatment methods were employed in the first year. Furthermore, for a woman without the BRCA1 or BRCA2 mutation and a low-risk of breast cancer, the cost would be less because the woman would most likely not have prophylactic surgery and BRCA testing which are extremely costly.
  

Despite these considerations which may diminish the average cost used in this model, it is also important to note that these numbers may be higher today than they were before, because health care costs have risen due to technological improvement. Because the cost of treatment options for breast cancer vary greatly, this component of the model is subject to great variability. Depending on a woman’s stage of cancer or individual preferences, she may choose to pursue different treatment methods. Furthermore, the cost of these treatments can vary based on the location of a facility or health care provider.

7) Administrative cost 


In addition to treatment costs, the model assumes that a certain administrative cost would also be included in the total costs of an insurance company.
 Although administrative costs vary depending on the insurance company, this model assumes it includes all “functional” costs such as billing clients and maintaining information (Henry J. Kaiser Family Foundation [KFF], 2010). To reflect the additional administrative work necessary to manage the files of high-risk clients, the calculation for administrative cost depends on the amount of a given premium.
 
The basic formula for administrative costs is =(12.5%*Premium)*Number of clients. Because members of the general population are assumed to be part of a private, large group insurance plan, the administrative costs are 12.5% of the premium (Litow 9).
 This includes a base administrative cost along with costs associated with underwriting of commissions and premium taxing (Litow 9).  Although higher administration costs are likely to be incurred by people who actually become sick, the model assumes this to be negligible. Therefore, as shown in Cell F7 of Figure 4.5.2, the estimated administration cost is equal to a percentage of the premium multiplied by the total number of clients. 


Similar to the general population group, the amount of administrative fees for the high-risk group depends on the amount of the premium. Although the high-risk group also assumes that 12.5% of the premium will be added for administrative costs, this does not include the commission and premium tax administrative cost (Litow 9). Rather, the amount of the base administrative fee is higher than that of the large group plan, because administrative fees are not consolidated under the economies of scale (Litow 3). Because the actual numbers did not change, the administrative fees calculation in Cell F7 of Figure 4.5.4 mirrors that of the general population. To calculate the total costs that the insurance company is likely to incur, the sum of the treatment costs from Column H and the administrative cost in Cell F7 are added.  The results of this calculation are found in Cell K3. 
8) Monte Carlo simulation 


The final component of the model without GINA is the Monte Carlo simulation.
 As the individual components of the model reflect, an insurance company faces a series of probabilities including the probability of individuals becoming clients, possessing a BRCA mutation, developing breast cancer due to BRCA mutation, and costs associated with treatment. Because the Monte Carlo method is utilized in cases where the probabilities have been determined, the goal is to predict the likely outcome based on these probabilities (Metropolis 336). Therefore, Monte Carlo simulation repeats the chance process to determine the results that the probabilities will likely yield (Barreto 216). 


Considering this theoretical framework for Monte Carlo simulation, its purpose in this analysis can be observed through the Excel functions. Using a simulation add-in for Excel, the Monte Carlo process tracks a cell reflecting an underlying stochastic process. In other words, when the workbook is recalculated, a new random draw is realized and its value may change. After highlighting the cell and selecting the number of repetitions to run the Monte Carlo simulation, Excel produces two sheets: one contains summary statistics of the Monte Carlo and the other contains the raw data for each repetition. By taking the average of the results from the Monte Carlo on the raw data sheet, an estimated value of a component such as cost or revenue can be predicted. Furthermore, Monte Carlo simulations can run simultaneously on several cells of a worksheet which allows many random variables to be tracked at once. 

To demonstrate the applicability of Monte Carlo to this model, consider the uncertainty of treatment costs found in Column H of Figure 4.5.1. While the probability of actually developing breast cancer given the risk of mutation (Cell F4) remains the same, the cost actually paid by the health insurance company is based on a random formula.
 The average cost was approximately $30,000 and the standard deviation was $8,000. Although a health insurance company can research average costs for treating breast cancer on an annual or five-year basis, it cannot estimate with certainty how much money they will have to pay to provide coverage to this individual. Therefore, based on the information known about the average costs for treating breast cancer over time, the expected cost of covering breast cancer victims can be predicted using Monte Carlo simulation. Because this process predicts values with a random element, it is known as a stochastic process (Wittwer).

Another essential aspect of Monte Carlo simulation is the fact that it becomes progressively more accurate as the number of Monte Carlo repetitions increases. Because the goal of Monte Carlo is to predict the expected result as closely as possible and understand the typical deviation from expected value, the more repetitions yield a closer estimate of the results. To illustrate this point, a 1,000-repetition Monte Carlo simulation was run on the high-risk group and yielded a histogram with a distorted shape.
,
 The distorted shape is attributable to the fact that there was potential for great variability of the data points because only 1,000 repetitions were run. 
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Figure 4.5.5: Histogram of 1,000-Repetition Monte Carlo Simulation for High-Risk Group
However, as shown in Figure 4.4.1, the shape of the histogram becomes smooth when Excel runs 100,000 Monte Carlo repetitions. Because the greater number of repetitions produces a more accurate estimate of the result, the model can estimate with greater certainty the profits that an insurance company would be likely to earn. Therefore, because of this relationship, the greater the number of repetitions, the more accurate results that the Monte Carlo simulation can produce. 


Based on these characteristics of Monte Carlo simulation, this model attempts to use Monte Carlo simulation to estimate values for five key components of the model. The model considers $1,000 increments of health insurance premiums to analyze the changes in the numbers.
 The first number that Monte Carlo simulation was run on was the total number of clients in the population shown in Cell K1 in Figure 4.5.1. Next, Monte Carlo simulation was run on the number of people who become sick or actually develop breast cancer shown in Cell M1 in Figure 4.5.1. Although the model was designed in a way to approximate these numbers, Monte Carlo simulation helped determine with greater accuracy what an estimated value of the outcome would be. 

Furthermore, Monte Carlo simulation was run on the revenues and costs shown in Cells K2 and K3 respectively to determine an accurate assessment of the money that an insurance company would earn and could expect to pay. Finally, Monte Carlo simulation was run on profits in Cell K5 of Figures 4.5.1 and 4.5.3 to accurately estimate how an insurance company’s profits would change when charging different premiums. Each Monte Carlo simulation was run with 10,000 repetitions. To depict this repeated decision process, Figure 4.5.6 summarizes the decisions made when determining revenues and costs for each individual in the insurance market.
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Figure 4.5.6 Overview of Revenue and Cost Process for an Individual Prospective Client
VI. Model with GINA


Subsequent to designing the model without GINA, another model was designed to demonstrate an insurance company’s risk pooling with GINA in place. In a world without GINA, insurance companies would be able to price differentiate based on the risks posed by the insured. However, if GINA were mandated, then insurance companies would not be able to intentionally obtain or use genetic information to charge different premiums. Rather, they would have to group together individual risks across the population to ensure that cost of the risk will be covered. Despite not having access to information regarding genetic risk, this model aims for a conservative estimate of the number of individuals with breast cancer susceptibility. Therefore, in the model, insurance companies are able to estimate with exact precision an individual’s risk for a BRCA mutation. In actuality, an insurance company will likely have little or no genetic information and therefore will be affected much more adversely by this legislation. 

Although insurance companies would still charge people different premiums based on their lifestyle choices (i.e. smoking, obesity, etc.), this model assumes that insurance companies are only concerned with one health factor: a woman’s risk of developing breast cancer due to a BRCA mutation. Because the insurance company would not be able to use genetic information to price discriminate, it would charge people of both risk groups the same premium and attempt to earn a high profit in doing so. 


To illustrate such a situation, the model calculates profits in the same way in which it did for the model without GINA.  The model assumes that 50,000 people are in the general population and 10,000 people are in the high-risk population. Figure 4.6.2 displays this information, as the calculations for the general population group are put beside the high-risk group. As shown in Figure 4.6.2, the formulas reveal that determining revenue, costs and profits remains the same as the model without GINA.
  One slight modification shown in Cell K2 of Figure 4.6.2 is that the premium for the high risk group is equal to the premium of the general population group in Cell B2 of the spreadsheet. 
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Figure 4.6.1: Combined Risks
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Figure 4.6.2: Corresponding Formulas for Combined Risks

Although the calculations for both models are done in the same way, they are synthesized differently when determining profits. As shown in Columns S and T of Figure 4.6.2, the total number of clients, number of people with breast cancer, revenue, cost and profit are determined by adding the results of the general population with the high-risk group. The profits that are earned are directly displayed in the spreadsheet shown in Cell T19 of Figure 4.6.2. Similar to the model without GINA, this model runs 10,000-repetition Monte Carlo simulations on the total number of clients (Cell T3), total number of people with breast cancer (Cell T6), total revenue (Cell T11), total costs (Cell T15) and total profits (Cell T19). By analyzing the results of these simulations, the optimum premium and profits under GINA can be determined. 
VII. The Results 


Through running a series of Monte Carlo regressions, the profits of the model can be generated. 

1) Results of the model without GINA 


After running a Monte Carlo simulation 10,000 times for the general population, the optimum premium was derived. By directly observing the results from each repetition in the Monte Carlo simulation, we get an approximation of the sampling distribution of the number of clients, the number of sick clients, revenues, costs and profits.
 As shown in Figure 4.7.1, the average number of clients declines as the premium increases. This result was expected as a price increase causes the number of people willing to purchase insurance to decline according to demand theory. Consequently, the average number of clients who become sick declined as premiums increased, because the number of sick clients depends on the number of clients who purchase insurance. 

	Premium
	Average Number of Clients
	Average Number of Sick Clients
	Average Revenue
	Standard Deviation – Revenue
	Average Cost
	Standard Deviation – Cost
	Average Profit
	Standard Deviation – Profit 

	$1,000
	42,188
	8
	42,188,125
	81,411
	5,514,635
	88,739
	36,673,490
	112,717

	$2,000
	34,375
	7
	68,750,179
	207,658
	8,789,992
	83,426
	59,960,187
	197,341

	$3,000
	26,564
	5
	79,690,920
	337,641
	10,113,482
	81,466
	69,577,438
	304,055

	$4,000
	18,748
	4
	74,993,673
	431,756
	9,480,821
	80,161
	65,512,852
	381,730

	$5,000
	10,938
	2
	54,690,120
	465,537
	6,899,109
	73,845
	47,791,011
	409,254

	$6,000
	3,125
	1
	18,749,187
	321,942
	2,361,606
	47,373
	16,387,581
	282,088


Figure 4.7.1: Table of General Population in Model without GINA (MC=10,000)

[image: image21.png]Profits

80,000,000
70,000,000
60,000,000
50,000,000
40,000,000
30,000,000
20,000,000

10,000,000

\

»

1,000

2,000 3,000 4,000

Premiums

5000 6,000 7,000





Figure 4.7.2: Graph of General Population in Model without GINA
Although the number of clients continues to decrease as the premium increases, the money brought in per client is higher. In other words, although an insurance company may lose clients when increasing its premium from $1,000 to $2,000, it generates greater revenue because each client is paying $1,000 more.  

The Monte Carlo simulation results for profit use the average revenues and costs to determine which premium to charge. Based on the average revenue and cost earned for a particular premium, the average profit was determined. As shown in Figure 4.7.2, the profits earned were greatest around $3,000 so the insurance company’s optimal premium would be around this point.
 However, because Figure 4.7.2 only considers increments of $1,000, a closer estimate of the optimal premium and corresponding maximum profit were obtained by using increments of $100.  By running 10,000-repetition Monte Carlo simulations on the values around $3,000 (i.e. $3,100, 3,200, 3,300, etc.), Excel revealed that the insurance company earns its optimal profits when charging a premium of $3,200 and earning $69,856,936 in profits.
,

	Premium
	Average Number of Clients
	Average Number of Sick Clients
	Average Revenue
	Standard Deviation – Revenue
	Average Cost
	Standard Deviation – Cost
	Average Profit
	Standard Deviation – Profit 

	$3,100
	25,782
	5
	79,923,695
	344,769
	10,138,376
	81,748
	69,785,319
	308,465

	$3,200
	25,001
	5
	80,002,341
	353,926
	10,145,405
	81,987
	69,856,936
	316,991

	$3,300
	24,128
	5
	79,920,621
	365,774
	10,129,463
	81,336
	69,791,158
	326,262

	$3,400
	23,438
	5
	79,689,467
	379,856
	10,096,701
	81,665
	69,592,766
	338,038

	$3,500
	22,656
	4
	79,297,359
	388,131
	10,041,578
	80,391
	69,225,780
	346,461


Figure 4.7.3: Table of Specific Premiums for the General Population in model without GINA (MC=10,000)
[image: image22.png]Profit

69,900,000

69,800,000 ﬁgﬁ
69,700,000

69,600,000

69,500,000

69,400,000

\

69,300,000

N

69,200,000

69,100,000 T T

3,000 3,100 3,200

3,300 3,400 3,500 3,600

Premium





Figure 4.7.4: Graph of Specific Premiums for the General Population in Model without GINA 
Similar to the general population group, the Monte Carlo simulations run on the high-risk group sought to determine what the optimum premium and corresponding maximum profit would be. Because the average premium for someone who has to purchase individual private insurance is greater than employer-based insurance, the parameters that control whether a person buys insurance are different than in the general population. As shown in Figure 4.7.5, the average number of clients and average number of sick clients declined as the premium increased. Based on a given amount of the premium and number of clients, the average profit reached an optimal point and then declined after this point.

	Premium
	Average Number of Clients
	Average Number of Sick Clients
	Average Revenue
	Standard Deviation – Revenue
	Average Cost
	Standard Deviation – Cost
	Average Profit
	Standard Deviation – Profit 

	$1,000
	9,090
	551
	9,091,064
	29,338
	17,656,376
	711,890
	(8,565,312)
	710,051

	$2,000
	8,180
	495
	16,362,237
	76,299
	16,908,617
	682,817
	(546,380)
	678,200

	$3,000
	7,271
	440
	21,815,940
	134,190
	15,931,615
	641,202
	5,884,325
	635,707

	$4,000
	6,363
	385
	25,452,963
	192,290
	14,737,469
	603,055
	10,715,494
	595,416

	$5,000
	5,454
	330
	27,274,988
	248,706
	13,320,676
	563,457
	13,954,312
	565,750

	$6,000
	4,545
	275
	27,273,323
	301,768
	11,664,771
	514,650
	15,608,552
	526,435

	$7,000
	3,636
	220
	25,456,616
	337,104
	9,791,951
	468,584
	15,664,664
	492,146

	$8,000
	2,726
	165
	21,812,194
	356,728
	7,677,996
	416,704
	14,134,197
	456,163


Figure 4.7.5: Table of High-Risk Group in Model without GINA (MC=10,000)
[image: image23.png]Profit

20,000,000

15,000,000

10,000,000

5,000,000

(5,000,000)

(10,000,000)

A
/
/000 4,000 6,000 8,000

10,000

/

Premium






Figure 4.7.6: Graph of High-Risk Group in Model without GINA
Based on the $1,000-increment in premium simulations from the high-risk group, the optimum premium for this group is around $7,000.
 Similar to the general population group, Monte Carlo simulations were run in $100 increments around this value to more accurately obtain a value for the optimum premium. However, because this section required greater accuracy to determine the optimum premium, a 100,000-repetition Monte Carlo simulation was run. As shown in Figure 4.7.8, the optimum premium was reached when the company charged $6,500 to people in the high-risk group and expected to earn $15,836,814 in profits.
  

	Premium 
	Average Number of Clients
	Average Number of Sick Clients
	Average Revenue
	Standard Deviation – Revenue
	Average Cost
	Standard Deviation – Cost
	Average Profit
	Standard Deviation – Profit 

	6,300
	4,272
	259
	26,918,937
	311,569
	11,125,557
	501,289
	15,793,381
	517,410

	6,400
	4,181
	253
	26,763,904
	316,631
	10,940,832
	499,160
	15,823,071
	515,554

	6,500
	4,090
	248
	26,589,484
	318,415
	10,752,669
	494,190
	15,836,814
	512,111

	6,600
	4,000
	242
	26,399,784
	323,285
	10,566,199
	486,990
	15,833,585
	507,729

	6,700
	3,909
	237
	26,190,694
	326,229
	10,372,751
	482,506
	15,817,943
	506,046


Figure 4.7.7: Table of Specific Premiums for the High-Risk Group in model without GINA (MC=100,000)
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Figure 4.7.8: Graph of Specific Premiums for the High-risk Group in Model without GINA
Using $3,200 as the optimum premium for the general population and $6,500 for the high-risk population, the total profits for the scenario without GINA were found to be $85,695,003.
,
 The standard deviation at this optimum position was estimated to be $598,365. 
	Premium
	Average Number of Client
	Average Number of Sick Clients
	Average Revenue
	Standard Deviation – Revenue
	Average Cost
	Standard Deviation – Cost
	Average Profit 
	Standard Deviation – Profit 

	Optimal*
	29,090
	252
	106,587,152
	473,469
	20,892,149
	500,671
	85,695,003
	598,365


*Optimal Premium for Model without GINA is $3,200 for the General Population and $6,500 for High-Risk Group 

Figure 4.7.9: Table of Optimal Premiums in Model without GINA (MC=10,000)

2) Model with GINA 


Using the combined risk spreadsheet displayed in Figure 4.6.1, 10,000-repetition Monte Carlo simulations were run to determine the optimum premium in a scenario where GINA was enacted. As shown in Figure 4.7.10, the overall trend of the results was similar to the model without GINA.  The crucial difference in the environments with and without GINA is that the insurance company is forced to charge a single premium to all clients with GINA. Without GINA, they are free to charge separate premiums and the results above show that the optimal pair of premiums is $3,200 and $6,500 for the low and high risk groups, respectively. The two environments do share some characteristics. As the premium increased in both cases, the average number of clients and number of sick clients decreased. As shown in Figure 4.7.11, the optimal premium was determined to be around $4,000.
 

	Premium
	Average Number of Clients
	Average Number of Sick Clients
	Average Revenue
	Standard Deviation – Revenue
	Average Cost
	Standard Deviation – Cost
	Average Profit
	Standard Deviation – Profit 

	$1,000
	51,278
	559
	51,278,006
	86,611
	23,168,440
	725,297
	28,109,566
	725,367

	$2,000
	42,558
	502
	85,115,008
	219,554
	25,694,027
	674,257
	59,420,980
	693,203

	$3,000
	33,835
	446
	101,504,333
	357,497
	26,059,848
	642,887
	75,444,485
	703,359

	$4,000
	25,114
	389
	100,456,626
	471,561
	24,218,675
	611,057
	76,237,951
	711,370

	$5,000
	16,394
	332
	81.970,417
	521,368
	20,213,490
	565,406
	61,756,927
	691,353


Figure 4.7.10: Table of Combined Risks in Model with GINA (MC=10,000)
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Figure 4.7.11: Graph of Combined Risks in Model with GINA

When running Monte Carlo simulations with smaller, $100 increments, the optimal premium determined via simulation was $3,500 with a corresponding profit of $77,757,620.
 The standard deviation at this optimum position was estimated to be $704,814.
	Premium 
	Number of Clients
	Number of Sick Clients
	Average 

Revenue
	Standard Deviation – Revenue
	Average Cost
	Standard Deviation – Cost
	Average Profit
	Standard Deviation  - Profit 

	$3,300
	31,217
	429
	103,016,697
	404,398
	25,734,425
	638,316
	77,282,272
	702,804

	$3,400
	30,348
	423
	103,182,621
	412,725
	25,578,595
	633,354
	77,604,026
	705,290

	$3,500
	29,473
	417
	103,156,759
	418,891
	25,399,139
	623,414
	77,757,620
	704,814

	$3,600
	28,602
	412
	102,965,555
	434,662
	42,224,557
	614,592
	77,740,998
	699,476

	$3,700
	27,731
	406
	102,605,957
	446,011
	25,011,684
	622,875
	77,594,273
	715,877

	$3,800
	26,856
	400
	102,053,496
	458,529
	24,758,270
	616,759
	77,295,226
	713,102


Figure 4.7.12: Table of Specific Premiums in Model with GINA (MC=10,000)
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Figure 4.7.13: Graph of Specific Premiums in Model with GINA
3) Comparing the two models 


To illustrate the significance of these findings, Figure 4.7.14 shows the profits that the insurance company generates from a 3D perspective. In this graph, the global, unconstrained optimal tier of profits that an insurance company can earn is indicated by black dot, the point at which the curve peaks. In the model without GINA, the insurance company is able to maximize profits of $85,695,003 by charging a premium of $3,200 for general population and $6,500 for the high risk population.
 Each band lower then this point a represents a different level of profits based on various combinations of general population and high-risk premiums. Although these combinations of premium generate profits near the optimal point, the profit-maximization point represents the single value where health insurance companies generate the highest possible profits. 
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Figure 4.7.14: 3D Graph Comparing Profit in Both Models
To provide another view of the 3D graph, Figure 4.7.15 displays the contour perspective of the optimal profits. The profit-maximization point displayed in Figure 4.7.14 is shown as the black dot which indicates a general population premium of $3,200, a high-risk group premium of $6,500 and profits of about $85.7 million. In addition to displaying the optimal results of the model without GINA, this graph shows the point at which insurance companies would be expected to operate at in the model with GINA.  Because GINA mandates that genetic information can not be used for underwriting purposes, the insurance company must set the premium for both risk groups equal.
 The diagonal line in Figure 4.7.15 reflects all the values at which the insurance company could set the premium equal. Based on the results of Monte Carlo simulation, the highest profits that an insurance company could earn would be $77.8 million, charging insured individuals a premium of $3,500. Because this point is on a lower profit level than the model without GINA, the insurance company would be forced to operate in an economically inefficient region if GINA were enacted.  
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Figure 4.7.15: Contour Graph Comparing Profit in Both Models

In addition to profits, it is also important to note the effects on standard deviation in the model with GINA. As reflected in the results, the standard deviation is greater when GINA is enacted.
 The higher standard deviation is attributable to the fact that insurance companies have to undertake a higher level of risk when insuring more potentially unhealthy clients. Because GINA raises the premium for healthy individuals, it causes some to drop out of the market leaving mostly unhealthy individuals to be covered. When considering this concept in the context of Figure 4.7.15, the insurance company would have a higher potential for volatility from the diagonal line which reflects the premium under the GINA mandate.  In the model without GINA, the insurance company would have more information available about its risk pool and would insure more healthy individuals with a lower probability of illness, so it would have less of a deviation from the optimal point shown. 
VIII. Analysis of the Results 

Because the model was designed with certain parameters, the general results of the model were expected. However, the results give great insight into the magnitude of the effect on profit which insuring risk to genetic breast cancer would have on an insurance company. Through the results generated under both scenarios, the weaknesses and strengths of the models can be deciphered.  

Because the model requires some unrealistic assumptions to be made, critics could claim that it does not have significant application to the real world.
  For example, the model makes several broad assumptions including two risk groups, the sole health risk being genetic predisposition to breast cancer and premium pricing based solely on the risk of developing breast cancer. In actuality, insurance companies pool together varying risk levels, women face a multitude of genetic and lifestyle risk factors, and premiums are based on the presence or likelihood of certain conditions (Diamond 1236). Because of such limitations, some would argue that the results produced by this model are only hypothetical and therefore are not applicable to the real world. 

Although Monte Carlo simulation can be extremely useful in modeling certain situations, arguments can be made which undermine its value. Intuitively, it makes sense that the insurance company would lose money if it does not have access to genetic information and the right to alter premiums based on this information.  In the problem of adverse selection, the insured is aware of her medical status and chooses a corresponding insurance policy based on the amount of coverage she believes she will need (Zick 29-30). Because the insurance company is unaware of this risk, it will charge everyone in the pool a higher premium with the hopes to cover the insurance cost that it will have to pay (Subramanian 532). As a result, healthy individuals will choose to leave the market and the number of clients will decrease, threatening the sustainability of the insurance company’s profits (Subramanian 532). Because results can be predicted without Monte Carlo simulation, critics may argue that running the Monte Carlo simulation does not contribute important information to knowledge on this topic. 

In addition to reflecting an already known relationship between premium and profits, the value of the model is limited because of its narrow scope. Because the process of Monte Carlo simulation can be very time consuming, the model ran only 10,000 repetitions for most of the simulations. As shown in the histograms in Figures 4.4.1 and 4.5.5, significantly greater precision can be reached with more Monte Carlo simulation iterations. Additionally, time constraints prevented further areas of study from being pursued. Since these models dealt only with the case of 30-year old women with a risk for BRCA mutation, they only apply to a relatively small proportion of women in the United States. The model also only considered BRCA mutation risk rather than verified BRCA mutation. Therefore, a more accurate and inclusive model would have demonstrated a realistic assessment of risk pooling by including various risk levels or risk at different ages. 

Despite these criticisms, the model used in this analysis has many features which strengthen its validity and applicability to the real world.  Because Monte Carlo simulation projects outcomes using probabilities, it is a widely accepted method for modeling cases of uncertainty (Smid 2). Unlike other simulation methods, Monte Carlo simulation provides the distribution of values for which it analyzes (What is Monte Carlo).
 When considering the many probabilities involved in determining genetic predisposition to breast cancer, the uncertainty that an insurance company undertakes is significant. Some of the uncertainty that the insurance company faces includes: the probability of possessing the mutation, probability of becoming ill once the woman has the mutation,  the probability that the costs for the woman’s treatment will be high, and the probability that a woman will drop out of the insurance market if the premium is increased.  Furthermore, the uncertainty that a health insurance company assumes becomes extremely complex as it tries to manage risks across a large group of individuals who change jobs, resulting in risk pools which are constantly adapting (Diamond 1239). 

With the advancement of genomics and many genetic tests available for testing cancer predisposition, insurers have entered a new era of pricing difficulty in which they aim to assess an individual’s medical risks given their knowledge despite laws prohibiting the use of such information (Pokorski 205). Furthermore, attempts to determine an individual’s expected medical costs are complicated by the fact that GINA legally prohibits employers from disclosing an individual’s genetic information to third-parties, such as a health insurance company (Genetics and Public Policy Center, 2010).Therefore, because Monte Carlo simulation allows for many of these probabilistic considerations to be computed, it provides insight into the process of managing risk pools in a time of great scientific advancement. 
In addition to effectively modeling a situation of uncertainty, the models are beneficial because they contain many realistic elements using historical data (What is Monte Carlo).
 For example, the model calculates BRCA mutation risk in a verified clinical manner, bases the average premiums and the proportion of clients in each pool on actual data, and uses accurate cost assessments for common breast cancer treatment methods.  By including this historical data, the Monte Carlo simulation can produce more valid results. 

Furthermore, through Monte Carlo simulation, an individual can observe the variation in outcomes which is likely to occur in a realistic scenario (Barreto 230). For example, although health insurance companies may have access to information regarding an individual’s probability of possessing BRCA mutation, it is difficult to foresee all of the implications of covering such a person. By developing concrete figures for the number of people who become clients, number of people who actually develop breast cancer, revenues, and costs, the model provides the magnitude of the effect of premium pricing on the profits of an insurance company. Therefore, Monte Carlo simulation is valuable in the scenario of breast cancer risk because it focuses on a specific risk and set of probabilities and allows people to observe the actual results of such a situation.

Although the magnitude of the components of model is a useful aspect of simulation, another key benefit of the Monte Carlo method is the standard error estimates that it provides. Because the models are contingent on the probabilities, they are used to project the likelihood that certain outcomes will occur. However, it is important to note that there is a random element involved with insurance premium pricing because there will always be chance that someone will develop breast cancer regardless of genetic predisposition (Barreto 230). Although insurance companies base their premiums on the expenses that they expect to incur through coverage, they can never know with certainty the number of people who will actually become ill, how much it will cost to treat these people and how many people will choose to purchase a premium (or drop out of the market) at a given price. Because the models in this analysis provide concrete figures as to the proportion of people who actually become sick and a likely amount that the insurance company would have to pay per person, it is able to project the amount of money that an individual will likely cost the insurance company and the variability in that amount. 

Furthermore, the standard deviation of the results illustrates an essential difference between a world with GINA and a world without GINA. In addition to generating less profits, the model with GINA also has a significantly greater standard error which highlights the fact that an insurance company will assume a greater risk when providing coverage to people which it does not have the ability to price discriminate against. Although the standard deviation was approximately 14% greater under the model with GINA, it would be much higher in reality because GINA prohibits employers from disclosing any genetic information to third parties, such as a health insurance company, so the insurance company would have no way assess an individual’s risk (Genetics and Public Policy Center, 2010). Because the model with GINA assumes that the insurance company is able to precisely predict the individual’s risk of developing breast cancer, this analysis represents the most modest estimate of the potential loss of profits and elevated risk an insurance company would undertake. Therefore, although it does not show the full extent of GINA’s effects, the model effectively illustrates that insurance companies have greater uncertainty in large pools of clients, and therefore the potential to incur a more devastating loss of profits would occur under the GINA model. 

The final contribution of the model is that it has the potential to be manipulated and used in the future. It can be adapted to include new mutation risks, premium levels, number of prospective clients, and costs. Furthermore, the model has the potential to become more complex by adding in specific administrative costs or including varying levels of breast cancer risk rather than simply looking at two groups. Therefore, in addition to contributing an understanding of the effects to an insurance company with greater access to genetic information, the model has the potential to contribute even more with further manipulation. 
IX. Conclusion 

To understand the economic implications of Title I of GINA on the health insurance industry, this section considers two scenarios: a world with GINA enacted and a world without GINA. For the purpose of simplification, individuals in this insurance market only possess the risk of breast cancer based on a BRCA mutation. Furthermore, individuals applying for insurance can be categorized as members of the general population, or low-risk, or highly susceptible to breast cancer, or high-risk. 

To calculate its optimal level of profits, the insurance company considers its expected revenues and costs. When the premium is too low, more individuals choose to purchase insurance. However, this also means that the insurance company has higher costs because more people become sick. When the premium is too high, fewer individuals enter the health insurance market decreasing the amount of revenue that it can earn. Although the costs will be less because less people are receiving health insurance coverage, the profits at this level are not adequate for an insurance company.  At some combination of revenue and cost, the insurance company maximizes its profits. 

Because the insurance company can only estimate the expected revenues and costs, Monte Carlo simulation is used to further define the point at which an insurance company maximizes its profits. Although this method does not provide the exact optimal point for the insurance company to operate, it does provide an accurate estimate. Furthermore, Monte Carlo simulation is highly beneficial because it reveals the variability that an insurance company is expected to experience in providing insurance for medical costs. 


Through repeating this process for the models with and without GINA, this section reveals that it would be economically inefficient for a health insurance to operate under GINA. In addition to generating higher profit levels, the health insurance company also has a lower standard deviation in the scenario without GINA and therefore has a smaller chance of incurring a great loss of profits in a given year. Although the analysis in this chapter is limited in its ability to be generalized to the entire health insurance industry, it highlights the major adverse effects that an insurance company is likely to experience with GINA in place.  While this chapter primarily dealt with the health insurance industry, the next chapter considers the effects of Title I of GINA on society as a whole. 
Chapter 5: Social Implications of Title I of GINA  

I. Background 


While Chapter 4 of this paper discusses the effects of GINA on the health insurance industry, the repercussions of GINA on society must also be considered. Although Title I of GINA would be economically inefficient for insurers, many would argue that the positive social benefits of this law would greatly outweigh its cost to insurers. Others would argue that enacting GINA may have unintended consequences that would adversely affect society. Even though some of these arguments presented apply to breast cancer, the focus of this section is broader and addresses genetic testing as a whole. Because the focus of the paper has been GINA’s impacts on the health insurance industry, the arguments in this section skim the surface of the full effects of GINA on society. By addressing these main arguments for and against GINA, this chapter serves to provide a more comprehensive analysis of the legislation.  
II. Arguments in support of Title I of GINA

Although the economic analysis reveals the negative economic implications of GINA, many would contend that it has a net positive effect on society. Because this legislation is a major advancement in combating genetic discrimination, arguments in support of GINA focus on its ability to correct injustices in society. Through considering these main arguments in favor of GINA, the positive social implications of GINA on society can be seen.  

Because GINA aims to prevent discrimination, it has an overarching moral benefit for society. Due to increasing knowledge and validity of genetic testing, an utmost priority of the United States has been to construct legislation in a way which promotes the utilization of such tests (“Genetic Information Nondiscrimination Act,” Sec. 2). Basic principles of social justice contend that all individuals who are at risk for a condition should have access to genetic testing (Peshkin 146). Because of the inconsistent coverage across state lines based on a the results of genetic testing, GINA strives to correct the shortcoming of past state legislation in which individuals choose not to undergo genetic testing out of fear that their employers or insurers would use this information to deny coverage or raise premiums (“Genetic Information Nondiscrimination Act,” Sec. 2). Even after the United States took federal legislative action with the enactment of HIPAA in 1996 prohibiting insurance companies from denying coverage based on results from genetic testing, about 70% of people reported that they would pay for a genetic test out-of-pocket based on fear of discrimination by insurers (Fulda 144).
 

In addition to the fear of discrimination, expense also acts as a barrier to receiving genetic testing. Although sequencing of the human genome has become less expensive, genetic testing for the BRCA genes has become increasingly more expensive, now costing approximately $3,120 for a comprehensive analysis (Peshkin 146). While the cost is likely to decline as a result of the recent court ruling in the Associates for Molecular Pathology v. USPTO, cost currently prevents many women from receiving genetic testing (Matloff 5). Therefore, to guarantee that individuals will have access to such testing, society should have legislation in place which promotes health-enhancing behaviors rather than deters them. By prohibiting discriminatory use of genetic information, GINA acts to reduce concern that individuals will be discriminated against and therefore further compels individuals to obtain genetic testing (“Genetic Information Nondiscrimination Act,” Sec. 2). Furthermore, experts believe that GINA will encourage more people to volunteer in clinical trials for genetic testing, because people will no longer fear that employers or insurers will have access to electronic medical records used in trials (Beckman 993). Therefore, government protection of these individuals through GINA removes the fear of discrimination and disincentive that people may have to obtain genetic testing (Epstein 1250-1). 

Besides a moral obligation to provide access to genetic testing, many would argue that there is a moral obligation to provide health insurance coverage particularly to those who develop diseases based on genetic predisposition. Because those genetically predisposed to illnesses bear no responsibility for their genes, it would be unfair to have them shoulder the cost burden for this condition (Korobkin 336). Based on the principle of communal moral solidarity, clients in the insurance market are united by a common interest: shared liability (Knoppers 76-77). In working for this common interest, clients accept moral responsibility to one another ensuring that any individual’s cost is covered if an unfavorable outcome ensues (Knoppers 76). Although actuarial calculations indicate that an insurance company should raise premiums or deny coverage to someone with a predisposition for a genetic condition, some would contend that it is not morally permissible to limit coverage particularly to those who have the greatest need for it (Surbone 154). 

Besides providing health insurance coverage to those who need it, another primary argument in support of GINA is that it prevents further racial and gender discrimination that may occur by insurers. Because particular racial and gender groups have a higher prevalence of certain genetic conditions, genetic information can infer a certain stigma for these groups (Rothstein Genetic Exceptionalism 30). The misuse of such information can lead to discrimination, eugenics and genocide (Rothstein Genetic Exceptionalism 30). The potential for discrimination of a particular group on the basis of genetic information can also be seen in the insurance market (“The Genetic Information Nondiscrimination Act of 2008”, Sec. 2). 

When presenting the findings on genetic discrimination, GINA cites the example of screening for sickle cell anemia which primarily afflicts African-Americans. Because of the high prevalence of sickle cell anemia in the African-American population, insurance companies mandated in the 1970s that all African-Americans receive testing for sickle cell anemia (“The Genetic Information Nondiscrimination Act of 2008”, Sec. 2). A similar issue may be likely to arise in the case of breast cancer if genetic nondiscrimination legislation is not mandated. Because about one in eight women are diagnosed with breast cancer as opposed to about one in 1,000 men, insurance companies would have the potential to institute a mandate stating women must undergo genetic testing if GINA were not in place (ACS, 2010). Furthermore, because certain racial groups such as premenopausal African-American women have a higher incidence of basal-subtype breast cancer than Caucasian women, these racial groups may have the potential be discriminated against by insurers (Carey 2499-2500). To prevent this type of discrimination towards particular groups, GINA negates the opportunity for insurance companies to target individuals on the basis of genetic information. 

Besides instilling a moral precedent for society, another argument in favor of GINA is its widespread popular support. After GINA was extensively debated over the course of the last decade, members of both political parties strived to pass legislation which would provide great protection to those predisposed to genetic conditions (Hudson). When the bill in its completed version made it to the final vote before Congress, it had the unanimous support of the Senate and almost complete support in the House of Representatives (USDL, 2010). Furthermore, the voting patterns of representatives in Congress on GINA legislation closely align with the beliefs of most Americans, with three in every four Americans stating that they would support legislation which would prohibit insurance companies and employers from genetic discrimination (Genetics and Public Policy Center, 2010). Through strong support in both chambers of Congress, the law possesses greater validity and reflects strong popular beliefs about genetic discrimination. 

The media’s depiction of insurance companies as profit-driven entities has been met with great disapproval by many Americans (Kaiser Health News, 2010). Amidst a recession and declining nominal GDP, several top health insurance companies continue to earn profits (US Department of Health, 2010). In 2008, the health insurance industry earned a 2.2% profit margin placing it 35 of 53 in the Fortune 500’s most profitable industries (Fortune, 2010). Over the last ten years, employer-based health insurance premiums have risen 131% (CBO, 2010). 

Although a gradual increase in premiums may be expected over time, a major focus of health care reform debate has been the recent increase in premium prices and projected increase for future years (Kaiser Health News, 2010). To demonstrate the extent of this increase, Anthem Blue Cross in California recently experienced an increase in premiums as great as 39% (US Department of Health, 2010).  Furthermore, Sandy Praeger of the National Association of Insurance Commissioners reports that it is “likely to see rate increases of 20, 25, 30 percent” for individual insurance plans (US Department of Health, 2010). Because premiums are becoming unaffordable for many Americans, there is a decrease in the number of individuals with private and employer-based insurance (CBO, 2010).
 Consequently, those relying on government-based insurance has increased substantially (CBO, 2010).
 

Considering GINA’s moral implications for society and widespread support, the overall argument in support of GINA is that it the most comprehensive and consistent genetic nondiscrimination legislation enacted to date. Prior to the ratification of GINA, most states had prohibited health insurance companies from determining an individual’s eligibility for insurance based on genetic information (NCSL, 2010). While state laws provided some degree of protection, they varied widely in the extent to which they barred the use of genetic information by insurers. Because of this inconsistency, many people found it confusing or unclear as to the extent insurers and employers were able to use genetic information (“The Genetic Information Nondiscrimination Act of 2008,” Sec. 2).By enacting federal legislation, GINA has greater power to combat discrimination and change public perception regarding this issue (Rothstein Current 177). As the “first major civil rights bill of the new century,” GINA has great symbolic value in society, marking a major step towards preventing discrimination against individuals by insurers (Rothstein Current 177; Hudson 2662). 
III. Arguments against Title I of GINA 

Despite its laudable intentions, several arguments can be made against Title I of GINA. While the effects of GINA seem ideal for society on the surface, many would argue that a closer look of the legislation reveals its inherent flaws. While some of these arguments respond directly to claims mentioned in Section II of this chapter, other arguments draw attention to the fact that enactment of GINA may cause new problems in society. The main argument discussed in this section addresses why genetic information should not be treated as exceptional from other types of personal information. Through considering the negative aspects of Title I, the long-term implications of GINA can be seen.  
The central argument against Title I of GINA is that genetic information should not be labeled as exceptional from other types of information in insurance underwriting. According to Title I of GINA, an individual’s genetic information refers to information about “such individual’s genetic tests, the genetic tests of family members of such individual, and the manifestation of disease or disorder in family members of such individual” (“The Genetic Information Act of 2008,” Title I, Sec. 101). The idea of genetic exceptionalism was derived in 1991 when HIV was deemed as exceptional (Rothstein Genetic Exceptionalism 30). From this claim, individuals obtained greater rights to privacy of HIV test results and received counseling prior to and after testing (Ross 141). 

Considering the rationale of HIV exceptionalism, many would argue that genetic information should be treated as exceptional from other personal information as well. Those who support the idea of genetic exceptionalism find that genetic information should be treated as exceptional because: (1) it is immutable; (2) it has the unique ability to predict an individual’s and family members’ medical future; and (3) it is inherently more influential in an individual’s development than environmental factors (Green 2; Ross 143; Sankar 394). Furthermore, genetic information should be treated as exceptional, because otherwise it can be used to discriminate against groups of individuals (Ross 141; Rothstein Genetic Exceptionalism 29). Lastly, similar to HIV testing, a primary motive for labeling genetic information as exceptional is that individuals would no longer fear discrimination based on the results of an genetic test and would therefore be more inclined to receive testing (Ross 141).  

Despite these beliefs, the claim that genetic information is immutable and can transcend time and space overstates the ability of genetic information to predict whether an individual will actually develop a disease (Sankar 394). Like other forms of personal information, the information obtained from genetic tests should be considered valuable, but generally limited to predict an individual’s expected outcome.  For example, although BRCA mutation test yields accurate results most of the time, it can also yield false positives and negatives (NCI, 2010). Therefore, the information obtained from genetic testing is not necessarily absolute and should not be treated as such.

 Genetic information should also not be treated as exceptional solely because it has implications for the decision making of individuals and family members (Rothstein Genetic Exceptionalism 30). From the perspective of a family member, genetic information on mutations is not necessarily immutable, because mutations can occur after conception (Ross 143). Although genetic tests have the ability to predict risks which impact the decision-making of individuals, this benefit extends to other types of information as well. Tests such a colonoscopy can convey a risk level and have great implications for an individual (Korobkin 336). Nongenetic tests such as cholesterol can also be an indicator of possible disease and therefore affect the decisions of individuals and family members (Sankar 394). Furthermore, information regarding individual’s socioeconomic background such as income also influences the decision-making capabilities of individuals and family members (Rothstein Genetic Exceptionalism 30).

While proponents of genetic exceptionalism assert that genetic information defines many vital characteristics of an individual, the importance of lifestyle factors should not be undermined. Although genetic information can provide risk probability, the development of disease is often influenced by lifestyle factors (Ross 143). As shown in the case of breast cancer, the distinction between genetic and nongenetic onset of breast cancer is almost insignificant as most cases develop due to both factors (Rothstein Genetic Exceptionalism 29). Once a woman has obtained the result from her BRCA test, she is faced with a probability of developing breast cancer. Although this probability is a concrete number, it can be influenced by several of the risk factors described in Chapter 2. For example, even though a woman may test positive for a BRCA mutation, her risk for breast cancer would also be heightened by factors such as drinking alcohol excessively or lack of physical activity (NCS, 2010). Furthermore, because a variety of outcomes may be implied with genetic information, genetic information should not be regarded as exceptional (Rothstein Genetic Exceptionalism). Although HIV is considered exceptional in privacy issues, it is a particular syndrome rather than general body of information with widespread implications for an individual’s health (Rothstein Genetic Exceptionalism 30). 

By regarding genetic information as exceptional from nongenetic information, GINA would be neglecting individuals who develop disease from nongenetic factors. Through providing greater insurance coverage to those who possess genetic predisposition to illnesses, individuals who do have nongenetic risk factors experience less protection (Hoyweghen). While individuals who possess a mutation do not have personal control over their genetic risk for disease, some individuals with nongenetic risk factors, such as diet, may have some degree of control over the development of diseases. However, other nongenetic risk factors such as age are similar to genetic predisposition because they exist without any influence of personal control. 

Because GINA only covers those who are predisposed to a genetic condition, some would argue that GINA does not go far enough to combat discrimination by insurers. Although it covers asymptomatic individuals with a genetic predisposition, GINA does not provide coverage to people once they actually develop cancer (Rothstein Genetic 179). Only a few states have guaranteed renewal policies to protect those who actually become afflicted by cancer (NCSL). GINA also does not require that health insurance providers cover the cost of specific genetic tests (Dressler 473). Because the uninsured population does not have access to insurance and most likely genetic testing, they do not reap any benefits from this legislation (Korobkin 335). Furthermore, GINA does not prevent genetic discrimination in life, long-term care or disability insurance (Dressler 473). 
While GINA prohibits insurers from denying coverage or raising premiums based on genetic information, test results for nongenetic tests may still be used to discriminate by denying coverage or raising premiums. For example, test results from a colonoscopy are subject to discrimination by insurers (Korobkin 336). Furthermore, by negating the use of genetic information, insurance premiums will have a greater focus on current health status which further increases the potential for discrimination on nongenetic tests (Korobkin 336). 
Because of these mixed results, critics would argue that the enactment of GINA would do little to help society and if anything, may have larger adverse effects on the many healthy people who have health insurance. In order to subsidize the higher health care costs of those with cancer and other illnesses, healthy individuals will have to bear some of the cost burden of insuring genetic risks. The economic effect on healthy people can clearly be seen in the economic models described in Chapter 4. In the model without GINA, individuals in the general population paid a premium of $3,200.  However, when put in the same risk pool as those with a high-risk for breast cancer, each healthy individual increased his or her premium to $3,500. While this only represents a difference of $300, the increase in the cost for a healthy person would be much greater in reality. Because the model with GINA assumes that insurance companies are able to guess with exact accuracy the high-risk individual’s probability of a BRCA mutation, a fairly precise assessment of risk can be determined for this scenario. In actuality, health insurance companies will have little or no information to indicate an individual’s risk of breast cancer and will therefore raise premiums substantially for the entire pool to ensure such costs are met (Epstein 1251). Therefore, although the breast cancer model in Chapter 4 only indicates a modest increase in premiums for healthy individuals, GINA would likely increase premiums for healthy individuals even greater. 

As shown in the economic model for breast cancer, increasing the premium will ultimately cause healthy individuals to not purchase health insurance or self-select into different health insurance pools (Korobkin 336). To avoid paying higher premiums to subsidize the cost of medical care for the sick, a healthy individual may choose to purchase insurance with higher deductibles and more exclusions which would not achieve GINA’s goal of spreading the risk of genetic predisposition (Korobkin 336). Therefore, because treating genetic information as exceptional may adversely affect other vulnerable individuals and healthy individuals, it would be misguided to treat genetic information different from other types of nongenetic information.

In addition to the responses to genetic exceptionalism, the final argument against Title I of GINA is that it creates problems in the insurance market which make it economically unsustainable. Because health insurance companies strive to pay stockholders return on investment, the success of a health insurance company is contingent on its profits (Murphy). Health insurance companies also use profits to support technological improvements for billing and use against annual fluctuations in insuring risk (Murphy). 

Despite the necessary role of insurance companies to act as profit-maximizing businesses, proponents of GINA claim that the behavior of insurance companies to generate millions of dollars in profits and raise national health care costs is unconscionable. However, a closer examination of the health insurance industry reveals that this case has been overstated (Kaiser Health News, 2010; Murphy). Insurance companies are not the primary culprits for increasing insurance costs. According to a report published by PriceWaterhouse Coopers, insurance profits comprise about 3% of the total amount of the premium (Pricewaterhouse Coopers, 2010).
 On the other hand, about 87% an individual’s premium is spent on medical services, such as doctor’s fees, inpatient and outpatient services, and drugs (PricewaterhouseCoopers, 2010). Furthermore, although health insurance is ranked 35th of the 53 most profitable industries, the pharmaceutical and medical product industries rank 4 and 5 respectively (Fortune, 2010). Therefore, the belief that insurance companies are the sole perpetrators in increasing health care costs by earning high profits has been distorted by the media (Kaiser Health News, 2010). 


It is also important to note the trend in profits that the health insurance industry has been experiencing over the last five years. In 2005, the Fortune 500 ranked the health insurance industry as the 21st most profitable industry, earning a profit margin of 7.1% (Fortune, 2010). In 2006, the health insurance industry dropped to a rank of 33, earning profit margin of 5.8 % (Fortune, 2010). Amidst a recession, profit margins have continued to drop to about a level of 2.2% (Fortune, 2010). Because of this declining trend, health insurance companies have felt increasing pressure to maintain profit levels sufficient to pay to shareholders.  

Due to this demand to maintain profits with increasing obstacles like federal legislation, insurance companies may find new ways to discriminate against clients (Hoyweghen). The rationale for the behavior of health insurance companies can be seen in the case of breast cancer described in Chapter 4. As shown in Figure 4.7.15, nondiscrimination legislation like GINA can compel an insurance company to operate in a less economically efficient region. Despite this barrier, insurance companies will act in its power to operate at its most efficient level. As a result, insurance company will be constrained and will find other ways to discriminate. 

One way of maintaining optimum profits would be to discriminate on the basis of current health status. For example, many European countries have adopted genetic nondiscrimination legislation which increases prices for those with lifestyle factors such as smoking and obesity (Hoyweghen). While the current insurance system in the United States uses some lifestyle factors such as smoking to calculate premiums, it may begin to use other factors like obesity to increase premiums (Hoyweghen).  Furthermore, in order to generate adequate profit levels, insurance companies could discriminate by charging even higher premiums to older people as age is not considered part of “genetic information” in GINA (Rothstein Current 176).  

In addition to current health status, insurance companies have historically found other ways to maintain profits with nondiscrimination legislation in place. Prior to the enactment of GINA, certain state laws were already in place which banned the use of the genetic information by health insurance companies in underwriting an individual’s policy (Rothstein Genetic Exceptionalism). Despite this mandate, some commercial entities such as a health insurance companies would still obtain genetic test results as they are widely accessible and hard to differentiate from nongenetic information (Rothstein Genetic Exceptionalism 29). Although the ability to keep certain genetic information private may improve with the development of electronic records, it still remains a major obstacle in preventing discrimination because there is no practical way to bar health care providers from releasing this information to insurers (Rothstein Current 177; Rothstein Genetic Exceptionalism 30). 

To prevent these and other forms of discrimination by insurance companies, the United States will likely follow its current trend by increasing the amount of nondiscrimination legislation which aims to protect more at risk groups of people (Rothstein Current 175). As a result, insurance companies will have less information when underwriting their policies compelling them to increase their premiums for all individuals in the risk pool (Epstein 1251). Because less people will be able to afford insurance, it will eventually lead to less people being insured. Due to rising costs in our current system, the six largest publicly held insurance companies have already begun to increase premiums resulting in 2.2 million fewer Americans choosing to purchase health insurance (US Department of Health, 2010). 

To illustrate this problem, the insurance market for breast cancer risk described in Chapter 4 should be considered. Because genetic breast cancer risk is also compounded with increasing risk of breast cancer with age, younger people with lower risks will be subsidizing the costs of care for the older, high risk women (Rothstein Genetic 200). Eventually, these young people will choose to leave the market because their premiums will become too high to afford with lower levels of income (Rothstein Genetic 200). When the healthy people choosing to leave the pool, insurance companies will be pressured to raise premiums even further to maintain a certain level of profits (Riba 479).  Because increasing premiums eventually cause individuals to withdraw from the insurance market until insurance companies do not earn profits, this system will ultimate disintegrate the health insurance market as it exists today.  

IV. Current status of genetic nondiscrimination legislation  
Considering the strengths and the weaknesses outlined by the arguments in Section II and III, the effects of this legislation boils down to two main goals: increasing and advancing genetic testing while protecting individuals from the misuse of such genetic information.  Because the health insurance system in the United States without GINA would allow insurers to deny or increase the price of insurance coverage, it discourages people from utilizing genetic testing. As a result, public health is hindered by the fear of discrimination because people are less willing to undergo genetic testing and participate in genetic research (Dressler 473). 
On the other hand, the current health insurance system in the United States with GINA in place does not seem feasible to sustain in the long run. With the increase in federal legislation prohibiting discrimination by insurers, insurance companies are forced to provide coverage to risky individuals with little or no knowledge about their levels of risk. The premium for the entire risk pool will increase causing more people to opt to not purchase health insurance. As a result, the entire health insurance market runs the risk of collapsing which leaves even more individuals uninsured (Epstein 1252).

Prior to the development of new legislation on health care reform, many scholars asserted that universal health care would solve the issue of discrimination by guaranteeing access to health care for everyone (Surbone 154; Riba 488). In addition to the high price of genetic testing, individuals will pay significantly higher medical costs after obtaining testing in order to pay for the costs of surveillance of a particular disease (Evans Health 2671). By sharing these costs across a population, individuals with a genetic disposition would not have to bear the entire burden of the medical bills they accrue (Evans Health 2671). 
Despite these beliefs, universal health care systems in Europe reveals that federal legislation prohibiting the use of genetic information by insurers would fail to achieve the goal of preventing discrimination while increasing genetic testing (Hoyweghen). Several countries with universal care have adopted Article 14 of the Oviedo Convention which states that information from a genetic test cannot be used by insurers and employers (Katz). Despite this protection, insurers are still permitted to ask clients whether the individual or a family member has been afflicted with disease (Katz). While certain countries have adopted this approach, other countries such as Germany and the United Kingdom offer no protection against insurance discrimination.  Furthermore, while many European countries offer universal health care coverage, they also have private health insurance markets which allow discrimination by insurers (Katz). Therefore, even in a universal health care system, insurers still face the pressure to use genetic information to determine eligibility of insurance coverage (Katz). 

In addition to potential further discrimination, universal health care systems also fail to increase the utilization of genetic testing. Due to the high cost and patent fees often added onto tests, countries which have more socialized health care systems are monetarily constrained and therefore unable to pay for such testing (Peshkin 146). Because universal health care systems insure a larger pool of clients, hospital and physician services must then be limited to contain costs (Williams-Jones 117-118). Therefore, individuals are expected to privately purchase additional medical care such as genetic testing (Williams-Jones 118). Similar to GINA, the private cost of genetic testing to individuals would continue to act as a barrier to many individuals for utilizing such tests (Peshkin 146).    


 Given the lack of political support to fully implement a universal health care system, the United States has instead enacted the Patient Protection and Affordable Health Care Act on March 23, 2010 (H.R. 3590). According to this law, health insurance companies must provide coverage to those with preexisting conditions and cannot determine eligibility based on an individual’s genetic information (H.R. 3590). Because insurance companies will face an increase in risk and cost, this will cause insurance premiums to increase for both healthy and unhealthy people. To ensure that premiums are low enough to still be affordable for unhealthy Americans, the law includes a provision which mandates that all individuals with available financial means purchase health insurance (Democratic Party Committee, 2010). In doing so, this law aims to expand health care coverage to 31 million Americans or about 94% of the United States population (H.R. 3950). 

From a theoretical standpoint, the enactment of the Patient Protection and Affordable Health Care Act is a step further than GINA in combating discrimination, because it mandates that individuals share health risks including genetic risk. Therefore, insurance companies would have significantly less ability to price discriminate individuals when underwriting insurance policies. However, like GINA, the new law does not require that the government provide coverage for genetic testing. Therefore, money may still act as a barrier to genetic testing. Furthermore, although insurance companies will not necessarily be discriminating on the basis of preexisting conditions, they will have the ability to discriminate on the basis of lifestyle factors such as obesity. 

From a practical standpoint, the Patient Protection and Affordable Health Care Act will drastically alter the current health insurance industry. While a mandate for insurance will increase demand for insurance coverage and will provide insurers with more prospective clients, insurance companies will also face significant increase in cost (Harrington 20). Because insurance companies would eventually have to increase the number of clients significantly, they will likely have to alter the medical services which they deem reimbursable (Harrington 22). 

Despite the mandate, a legitimate concern with the Patient Protection and Affordable Health Care Act is the fact that is that the penalty fee for opting out of mandated insurance is relatively weak.  According to the Patient Protection and Affordable Health Care Act, individuals who have the means to purchase insurance but do not comply face a fee which is the greater of $95 or one percent of income in 2014; $325 or two percent of income in 2015; $695 or 2.5 percent of income in 2016 (Democratic Party Committee, 2010).
 Therefore, although the number of people who purchase insurance will increase because of the mandate, some individuals who will choose to pay the noncompliance fee rather than purchase insurance (Harrington 20-21). As a result, the government’s aim to insure risks more evenly across the pool may not be as effective (Harrington 20). Instead, by self-selecting minimal insurance policies or opting out of health insurance completely by paying the fee, individuals still have the ability to perpetuate the adverse selection problem in the health insurance market (Korobkin 336). Those who feel that they are the healthiest will be the least likely to purchase insurance under this mandate and those who think they are likely to be seriously sick are the most likely to purchase insurance. 

 
As shown in the history of legislation described in this paper, no perfect solution to this problem exists. Rather, the costs of and benefits of improving genetic testing while preventing discrimination must be considered. Despite the honorable intentions of federal nondiscrimination legislation like GINA, the problem of accessibility to genetic testing remains a constant issue. In particular, the high cost of genetic tests such as the BRCA mutation test acts as a barrier to obtaining genetic testing (Peshkin 146). Furthermore, the compounding monetary effects of adopting more socialized health care policies has the potential to increase health care costs even greater for an individual by making genetic testing and health insurance unaffordable (Fuchs 999). 

Given the shortcomings of both past and current federal legislation in the United States and abroad to address the issue of genetic discrimination and genetic testing, the United States should strive to achieve two goals: decrease the cost of the genetic tests as well as allow for greater transparency of genetic information to reduce the overall health care costs.  Since the complete sequencing of the human genome in 2003, the cost of analyzing DNA has decreased. However, the cost the genetic test itself remains a barrier for many individuals to receive genetic testing (Peshkin 146). In the case of breast cancer, the recent court ruling in the Associates for Molecular Pathology v. USPTO eliminates the monopoly Myriad, Inc. currently holds over BRCA testing, which is likely to lower the cost of such testing. This groundbreaking verdict making genetic information not patentable and enables the cost of other genetic tests to decrease as well. 

To supplement this recent decline in the cost of genetic testing, the United States should allow for genetic information to be shared with insurers. While greater transparency of genetic information would enable health insurers to price discriminate, some corresponding actions taken by the government could somewhat counteract these effects. Although the fear of discrimination by insurers may influence some individuals to forgo genetic testing, it will ultimately have a more positive effect than nondiscrimination legislation by increasing funds available for many individuals and companies (Epstein 1252). Through providing genetic information to insurance companies, genetic transparency would have positive implications for healthy and unhealthy individuals, the insurance industry and society as a whole. 

In addition to the increase in the further development of genetic testing, healthy and unhealthy individuals are likely to benefit from greater transparency of genetic information in the long run. For the healthy individual, his or her premium price is lower than it would be if federal genetic nondiscrimination legislation was mandated. For example, in the economic model for breast cancer described in Chapter 4, the healthy individual will pay a premium of $3,200 rather than $3,500 in the scenario where GINA was enacted. Furthermore, if the individual maintains a healthy state, then he or she will not have to face severe increases in premiums because there is no pressure to cover the medical costs of unhealthy individuals in the pool. 
While greater transparency would have clear monetary benefits for healthy individuals, it would initially hinder unhealthy individuals because insurance companies would be able to charge them higher premiums. Because of this setback, Epstein proposes that the government implement a system in which it provides subsidies for those who become afflicted with illness due to genetic factors (1250). By providing monetary support to these individuals, the government would lessen the incentive for employers and insurers to discriminate as well as increase the incentive for individuals to receive genetic testing (Epstein 1250). Because firms and individuals will be able to earn higher profits in this system, the greater source of money derived from taxes can be used to help pay for these subsidies and would likely to be more efficient than if nondiscrimination legislation were enacted (Epstein 1251). While such a system would not be completely devoid of price discrimination, it would somewhat counteract the fear of discrimination and ultimately allow for more genetic testing. Although such a program would need further consideration because of its cost to government, it theoretically offers a possible solution to increase transparency of genetic information.  

In addition to benefiting individual members of society, greater genetic transparency would have positive impacts on the health insurance industry. As shown in the economic model in Chapter 4, insurance companies are able to operate at their optimal level of profits when they have the ability to price discriminate between risks. While insurance companies would be reluctant to provide coverage to potentially unhealthy individuals, government subsidization of high-risk individuals would act to counteract this behavior of insurance companies by providing some reimbursement for medical costs (Rothschild 631). By having more information to accurately calculate expected revenues and costs, insurance companies will not feel the need to set premiums as high because they will have greater insight about the risk they are undertaking.  As a result, more individuals may be able to afford health insurance than if federal nondiscrimination legislation were mandated. 

Although the greater transparency of genetic information benefits individuals and families as well as the health insurance industry, it also has positive societal implications for public health. With a high prevalence of cancer and other conditions stemming from a genetic basis, the United States would benefit greatly from greater information about the frequency and severity of these diseases (Congressional Research Service, 2010). Furthermore, widespread information can lead to identifying with greater accuracy the frequency of genetic mutations as well as particular groups (Gostin 323). For example, through genetic testing on the BRCA1 gene, Ashkenazi Jews were identified to have an increased risk and therefore more proactive measure to detect and prevent breast cancer for these individuals has been developed (Gostin 323). 

With the increase in the prevalence of genetic testing, there will be more opportunities to develop genetic research which would benefit society (Beckman 993). Because genetic information influences the prevention, treatment and lifestyle choices of individuals, the increase of such information leads to the development of better intervention methods by health care providers. Specifically, the diagnosis, counseling and treatment of genetic conditions will likely improve (Gostin 323). 
V. Conclusion 

Although GINA would have an adverse impact on health insurers and private customers, many would argue that the benefits of GINA for society would be great. Because GINA goes further than any previous legislation to combat genetic discrimination, it would be expected to bring about greater equality among members of society. Despite these noble intentions, critics of Title I of GINA find genetic information is not worthy of an exceptional status in insurance underwriting. Furthermore, GINA may have may have unintended consequences which would adversely affect society. Through considering the main arguments in support and against GINA, a more clear understanding of current health care legislation can be reached. With greater transparency of genetic information, society will benefit by increasing the potential for genetic testing. 
Chapter 6: Conclusion 


Through this comprehensive analysis of Title I of GINA, the widespread implications of federal nondiscrimination legislation can be seen. This analysis specifically considers genetic breast cancer risk and genetic testing to show the impacts of GINA when providing insurance to those who are predisposed to breast cancer.  Although GINA marks a groundbreaking step to prevent discrimination, it would adversely affect the health insurance market and would ultimately hinder society as a whole.


To understand the costs and coverage that an insurance company could provide, this analysis discusses the biological characteristics of breast cancer. By doing so, the contributory risk factors, detection, prevention and treatment for genetic breast cancer can be incorporated into the rationale of the economic model. Furthermore, risk assessment and genetic testing of breast cancer also provides an understanding of what type of genetic information is available and able to be used by insurers. 


While the economic model used in this analysis concerns a specific insurance company providing coverage for a single risk, the results obtained in this analysis apply to the insurance industry as a whole. In a world without GINA, insurance companies are able to price discriminate on the basis of genetic information. Because insurance companies would have greater knowledge about the level of risk they are undertaking, they would be able to set the premium for their risk pools at a level that would generate an optimal level of profits. Furthermore, the insurance company would undertake less risk because they would have more information available on the risk levels of their clients. 

In contrast, with GINA enacted, insurance companies have less of an ability to price discriminate. As shown in the model of breast cancer with GINA, the insurance company is forced to charge healthy and potentially unhealthy individuals the same premium. Because the insurance company has less information available about where to set the premium, it will set it high with the hope that it will cover costs completely and generate profits. As a result of the higher premium, the optimal level of profits with GINA is less, because many healthy individuals will choose to leave the insurance market. Furthermore, the risk pool will be comprised of more unhealthy people resulting in greater costs for the insurance company. Due to the results shown for this hypothetical insurance industry, this analysis concludes that GINA would be economically inefficient for the health insurance industry. 

While GINA would have negative economic implications for the health insurance industry, many contend that it would have an overall benefit on society by reducing injustice inherent in insurance. Proponents of GINA find that it instills a necessary moral standard in which individuals predisposed to genetic conditions have access to health insurance and genetic testing. Because GINA goes farther to combat genetic discrimination than any legislation before it, it has significant symbolic value in the United States.  

Despite the arguments in support of GINA, critics find that the long-run implications of this legislation indicate its potentially destructive effects on society. By treating genetic information as exceptional, those who do not have genetic predispositions namely those with nongentic risk factors have the potential to be discriminated against. Furthermore, healthy individuals who do not have a genetic predisposition are adversely affected by GINA, because they are expected to pay higher premiums to subsidize the cost of insuring those who are genetically predisposed. Because rising premiums will cause healthy people to drop out of the insurance market, insurance companies will continue to increase premiums to insure unhealthy individuals who remain in the market. Because the profits will decrease due to the size and composition of the risk pool, the health insurance market runs the risk of collapse. 

Although the United States has attempted to implement various forms of federal legislation to prevent genetic discrimination, it has yet to do so effectively. In enacting various policies, federal legislation has aimed to achieve two goals: increase the utilization of genetic testing while preventing discrimination on the basis of this information. Despite noble intentions, federal legislation has done little to make genetic testing more accessible in society and ensure that individuals with various conditions will not be discriminated against. 

To promote more widespread use of genetic testing, the United States must decrease the cost of genetic testing and allow for greater transparency of genetic information in society. Because of the recent court ruling in Associates for Molecular Pathology v. USPTO, the cost of genetic testing for breast cancer will likely decrease. Additionally, genetic testing for other conditions is likely to decrease as well, because it will limit monopoly power over genetic testing. 
Besides decreasing the cost of genetic testing, the United States should consider the long-term benefits of greater transparency of genetic information in society. Although greater transparency would allow health insurers to price discriminate, it would ultimately reduce the inefficiency that currents exists because of legislation. Furthermore, it will increase the money available for many individuals in society which would further enable them to afford proactive health care measures like genetic testing. 

While genetic transparency presents a potential solution to reducing the inefficiency of federal legislation, further consideration should be given to ways to achieve this goal. In Epstein’s proposed solution, the government would pay for subsidies for those who possess a high-risk for a genetic condition. This would provide financial support for those with a high-risk for a genetic condition as well as offer employers and insurers less of an incentive to price discriminate. However, because it is difficult to determine what conditions are caused solely by genetic predisposition, the United States would have to lay explicit guidelines as to what constitutes a genetic condition. 

While this analysis skims the surface of a truly complex problem in society, it serves to provide a perspective which is often given little consideration. By demonstrating the long-run ramifications of GINA, this analysis reveals the unintended effects of federal legislation which threaten the sustainability of the health insurance industry. Furthermore, this analysis serves to show that members of society will bear the cost of such legislation. Although the cost of health insurance would increase for many people, genetic testing would still remain inaccessible to most individuals. By considering the long-term results of GINA, the United States should strive to correct problems in the health insurance industry by restricting federal legislation and allowing greater transparency of information. 
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� In the 1970s, North Carolina and Florida both passed legislation prohibiting health insurance companies from discriminating by denying insurance or raising premiums for individuals with the sickle cell trait. In 1986, Maryland passed more comprehensive genetic nondiscrimination legislation by also restricting genetic conditions including Tay-Sachs and thalassemia minor (Rothenberg 313).





� Additionally, about 2/3 of states have enacted plans prohibiting employment discrimination on the basis of genetic information (Rothstein Current 175).


� In the vote, 414 House Representatives gave their consent to the bill while one dissented (USDL).


� “Family member” includes any dependents or first, second, third, or fourth-degree relative (“The Genetic Information Act of 2008,” Title I, Sec. 101) 


�  “Genetic test” refers to “an analysis of human DNA, RNA, chromosomes, proteins, or metabolites, that detects genotypes, mutations, or chromosomal changes.” (“The Genetic Information Act of 2008,” Title I, Sec. 101) 


� The Secretary can charge a minimum of $15,000 for severe cases. 





� The risk factors can be found in What You Need to Know About: Breast Cancer (2009).


� A woman’s likelihood of being diagnosed with breast cancer is as follows: 0.43% from ages 30-39; 1.44% from ages 40-49; 2.63% from ages 50-9; and 3.65% from ages 60-69 (NIH, 2010).  


� “Benign breast growth” encompasses a variety of abnormal tissue growths, typically categorized as nonproliferative lesions, proliferative lesions without atypia, and atypical hyperplasias (Hartmann 230). 


� For example, if a women has a 3.5 relative risk for developing breast cancer in her life, this indicates that the women in 3.5 times more likely to develop breast cancer (based on her risk factors) than someone in the general population (Euhus Quantitative 1). The smallest risk that any woman would have is 1.0.


� “Lower category breast cancer” is benign breast disease that is not atypia hyperplasia and in situ breast cancer (Wang 616). 


� This is based on a meta-analysis of 22 studies of the risk of developing breast cancer while possessing a BRCA mutation (Antoniou 1126). 


� “Early” age at menarche is considered to be a girl younger than twelve. 


� A representative study done on 100,000 French women confirmed these findings (Clavel-Chapelon 723). 


� Basal-like subtype has been shown to have worse clinical outcomes than other subtypes (i.e. luminal) (Carey 2499). 


� Although the basal-like subtype is associated with BRCA1 and BRCA2 mutations, none of the African-American women in the study possessed such a mutation. This suggests that there is potentially another gene responsible for the transmission of breast cancer in African-American population (Carey 2500). 


� According to the National Center for Health Statistics, approximately 40% of women ages 50-59 and 30% of women ages 65 and older are considered obese (CDC, 2010). An adult with a BMI of 30 or higher is considered obese (CDC, 2010). 


� While the study was monitored for 25,624 women, only 351 actually developed invasive breast cancer (Thune 1270). 


� In this study done of approximately 3,000 nurses who were diagnosed from 1984-1996 with breast cancer, women reported the amount of weekly physical activity beginning in 1986 (Holmes 2479-80).


� Studies have shown that women who work at night may have an increased risk of developing breast cancer because the body produces the hormone melatonin at night and exposure to light can decrease melatonin levels and increase the amount of estrogen (Susan B. Komen for the Cure, 2010). 


� “Highly penetrant” refers to BRCA1 and BRCA2 genetic mutations which are rare, but highly deleterious alleles. 


� Data used from American Cancer Society’s “Breast Cancer Facts and Figures 2009-2010.” According to this source, about 192,370 new cases of invasive breast cancer will be diagnosed in the United States in 2009. 


� The lifetime risk of developing breast cancer for BRCA mutation carrier is 50-80% (Narod 667). 


� According to Carroll, et. al., one per 800 people in the Caucasian population will inherit a BRCA mutation. However, about one in 40 people in the Ashkenazi Jewish population will inherit such a mutation (Carroll 1691). 


� Families were considered “high-risk” if probands had been diagnosed with breast cancer prior to age 55 (Newman 3044). 


� Segregation analysis is used to determine the number of offspring who have inherited “distinct and mutually exclusive” phenotypes (American Heritage Medical Dictionary). 


� A frameshift mutation is the insertion or deletion of a single base pair which alters the original DNA sequence (Biology Online). 


� A nonsense mutation is when the production is prematurely terminated resulting in an incomplete protein product (Biology Online). 


� BRCA1 cases of breast cancer are often Grade 3 (Teng 86). High-grade tumors are poorly differentiated and tend to be the most aggressive (Medicine Net). Furthermore, the basal-like phenotype has been associated with worse prognostic outcomes, resulting in more fatalities due to breast cancer (Carey 2500). 


� This is compared to women who do not have a mutation. 


� According to Foulkes, et. al., individuals with STK mutations have approximately 30% higher chance of developing breast cancer by age 60 (Foulkes 2147). Although further research needs to done, preliminary research done on TP53 has shown that it may increase breast cancer risk greater than the BRCA genes (Pasche 1). Furthermore, TP53 mutations are rare, occurring only one in every 5,000 in the population (Lalloo 1101). 


� The specifics of BSE technique can be found in the American Cancer Society’s “Breast Cancer: Early Detection.” 


� In order to test the effectiveness of mammography in this age group, the USPSTF looked at the effectiveness of five different methods of breast cancer treatment including film mammography, clinical breast examination, breast self-examination, digital mammography and MRI (Screening 716). 


� In this context, “overdiagnosis” is treating someone who will not develop breast cancer in their lifetime. In other words, the lesion will never manifest into invasive breast cancer (Screening 720). 


� Vote took place in December 2009 (Mundy). 


� The USPSTF recommends biennial mammograms rather than annually because there are some risks associated with mammograms which render them not beneficial in most cases on an annual basis (Screening 718). 


� Although a partial mastectomy removes greater tissue than a lumpectomy, it is also considered a breast-conserving surgery (ACS, 2010). 


� There is a further differentiation between total and modified radical mastectomy. For a total mastectomy, the entire breast is removed, but no tissues or nodes. In a modified radical mastectomy, the breasts, lining of the chest muscles and lymph nodes in the armpit are removed (ACS, 2010). 


� Likelihood of recurrence is determined by the “recurrence score.” “Recurrence score” is determined through analyzing an individual’s tumor tissue through reverse transcriptase polymerase chain reaction and applying a formula which calculates the likelihood of recurrence based on historical data for particular types of genes (Morrow 156-7). 


� In order to calculate individual relative risk in the Gail model, risk score (obtained by multiplying the relative risks of for each factors) is multiplied by the population risk of breast cancer (Armstrong 567).


� According to the Mayo Clinic, “atypical ductal hyperplasia” forms when normal cell growth is disrupted. As a result, normal-looking cells are overproduced and begin to aggregate in an abnormal shape. If untreated, cells could manifest themselves into invasive breast cancer (Mayo Clinic, 2010).


� A validation study is one whose intent is the determine the validity of an assessment tool (Study). 


� The Claus model assumes that breast cancer is inherited in autosomal dominant fashion (Claus 648).


� In order to calculate risk of developing breast cancer in the Claus model, “tables” were developed which indicate the risk of developing breast cancer over time based on the presence of certain risk factors (Claus 646). For example, a table may give a typical risk prediction for a person who has two first-degree relatives who have a personal history of breast cancer, given the onset age of these relatives.


� The assumption is made that “BRCA” can refer to either a BRCA1 or BRCA2 mutation. The BRCAPRO model also assumes autosomal dominant transmission of breast cancer.  


� For example, if the allelic frequency of having a BRCA mutation in a certain population is .0008, the “prior probability” risk for this population would be .0016 because there are two alleles on each gene (Euhus Understanding 228).


� “Complete family history” refers to recording all relevant medical conditions for all living and deceased relatives (both affected and unaffected).  


� The BRCAPRO model has been tested in a certain populations, such as European American, and revealed that a small group of individuals in this population have a 95% chance (or greater) of having a BRCA mutation. After undergoing the BRCA mutation test, about 85% of these patients were shown to actually have one of the BRCA mutations. Similarly, in another population such as Iceland, the small group of patients who BRCAPRO predicted to have 95% (or greater) chance of having a BRCA mutation also had about 85% accuracy of actually having the mutation (Euhus Understanding 229).  


� In the BRCAPRO model, the “prior probability” is needed to calculate breast cancer risk for an individual based on the incidence of a BRCA mutation in a given population (Euhus Understanding 228). For example, incidence of breast cancer is highly elevated in the Ashkenazi Jewish population. Therefore, the projections for an individual possessing a BRCA mutation and/or developing breast cancer over time would adjust for populations which have a high concentration of Ashkenazi Jews.


� In this context, “clinical judgment” refers to the fact that genetic counselors have to assess a patient when some risk factors are not considered in the models. For example, an individual may have little to no risk in the Gail or Claus models, but may have a case of pancreatic cancer in a first-degree relative which may indicate a higher risk of developing breast cancer. Because this risk factor is not included in two of these models, however, a genetic counselor could opt to omit this as a significant risk factor.    


� Because it is about 100 times less common for men to develop breast cancer than women, this discussion applies solely to breast cancer in women (ACS, 2010).


� Hereditary breast cancer comprises about 5-10% of the total number of breast cancer cases. 


� Genetic breast cancer in this case specifically refers to either a BRCA1 or BRCA2 mutation. 


� Other BRCA related cancers included in this group were ovarian and prostate cancers (Ellisen 427).


� Refer to the pedigree in Figure 4.3.1. This pedigree includes the woman and her blood relatives (grandparents, aunts, uncles, parents and siblings). 


� The lower, black-and-white outlined CancerGene pedigree shows a sample pedigree of a 30-year old woman from the general population and her blood relatives. Each of the squares and circles represent one individual. The squares represent men while the circles represent women. The ages for the individual are listed below each figure. The arrow indicates the 30-year old  sample woman for general population. The two squares to the left of this woman are her brothers and the circle to her right is her sister. In the row above, the woman’s parents are shown (the circle directly above is her mother and the square directly above is her father). The squares and circles in this same row show the aunts and uncles of the sample woman. At the uppermost row, the sample woman’s grandparents are shown. Her mother’s parents are shown to the right while her father’s parents are shown to the left. The line through these figures indicates that they are deceased. The descriptions found under some of the individuals indicates any possible conditions that afflicted them in their lifetime with the age of occurrence listed beside it. As shown in the pedigree, “BCC” is a form of skin cancer which afflicted the sample woman’s father and grandmother. The sample woman’s aunt on her paternal sign was labeled “Col” for being afflicted with colon cancer at age 54. Lastly, the woman’s grandfather on her maternal side is labeled “CNS” for having a condition involving the central nervous system, such as brain cancer.  


� Based on the pedigree provided in Figure 4.3.1, the BRCAPRO probabilities for BRCA mutation are displayed in this figure. Although the graph shows the likelihood of develop breast (blue) or ovarian (red) cancer by age, the information used for this analysis is the carrier probabilities for a BRCA1 or BRCA2 mutation found towards the top of the screen. 


� Refer to Figure 4.3.3.


� Refer to the description of a pedigree found in Figure 4.3.1. The black-colored circles on the sample woman’s maternal side shows that the woman’s mother and grandmother were both afflicted with breast cancer with the ages listed beside it. 


� As shown in Figures 4.4.2 and 4.4.3, a normal probability distribution is a smooth, bell-shaped curve which has an area of 1 (Jaedicke 919). 


� For example, a health insurance company does not necessarily know that if it raises its premium by a $1,000 a certain number of people will definitely leave the insurance market. Rather, it is has to predict the likelihood in way to best estimate their revenues. 


� This would apply to the high risk pool comprised of 1,000 prospective clients. 


� Refer to Figure 4.4.2. 


� Refer to Figure 4.4.3. 


� This model assumes that premiums are set on an annual basis. 


� The value of the premium can be seen in Column C of Figure 4.5.2. Because the formula includes $B$2, it references Cell C2 and therefore it values are contingent on premium. 


� See Congressional Budget Office’s Analysis of Health Insurance Premiums Under the Patient Protection and Affordable Health Care Act (2009). Under the current law, the average premium for an individual in the “nongroup” population is about $5,500. “Nongroup” refers to individuals who purchase insurance policies individually and not on a group plan. 


� For the general population, this represents the number of individuals who need health insurance although their employers will be the ones in the market searching for the best deals. 


� Because five-sixths of the total insurance market is on employer-based plans, this model accurately reflects that 50,000 of 60,000 people would be on employer-based plans. 


� Because the average premium for the general population market was $3,200, this model assumes that the maximum that anyone in this market would purchase a premium for is 2*$3,200=$6,400 (CBO, 2010). 


� In this case, “client” refers to people who actually purchase insurance. 


� In the high-risk pool, the formula substituted K for B to reflect the change in parameters for the high-risk group. 


� This reflects the fact that the average premium is $5,500 and the maximum a person in this market would be willing to pay would be $5,400*2=$11,000. 


� Corresponding cell refers to the adjacent cell in the column to the immediate right. For example, if Cell C2 is a 0, D2 will be a 0 to reflect that the individual does not purchase health insurance in this market and therefore does not pay any premium. However, if Cell C2 is a 1, D2 will be equal to the amount of the premium (Cell B2) because the patient pays the premium to the health insurance company. 


� Cell K2 in Figure 4.5.4 shows the formula =SUM(D2:D50001) which is the sum of premiums earned in Column D. 


� As shown in the CancerGene screen in Figure 4.3.2, the BRCAPRO model reflects an individual’s probability of developing breast cancer over time as well as the likelihood of possessing either a BRCA1 or BRCA2 mutation. 


� Although insurance premiums are determined on an annual basis, no data about the annual risk of developing breast cancer with a BRCA mutation was available. This may cause the anticipated annual cost to be greater than it would be on an annual basis, because the risk of developing the cancer should be spread out over ten years rather than considering it on an annual basis. 


� As shown in Figure Cell F4 of Figure 4.5.2, the probability of the mutation (.001 for the general population)*probability that the individual will actually develop breast cancer with the BRCA mutation (.191) = probability of becoming sick (.000191). 


� See Cell F4 of Figure 4.5.1. 


� See Cell F4 in Figure 4.5.1 for the general population and Cell F4 in Figure 4.5.3 for the high-risk group. 


� Refer to Column G in Figure 4.5.2.


� This part is reflected in the reference to the corresponding cell in Column C. For example, if an individual in Column C2 becomes a client (as indicated by a 1), then they have the potential to become sick reflected in Cell G2. 


� This can be found by taking the sum of Column G, the number of sick people in the high-risk population. 


� Formula is =IF(G2=0,0,NORMALRANDOM(30000,8000))


� The figures obtained are based on the Markov model of prognosis. The Markov process establishes that there are many distinct states of health which are defined by their prognoses, relativity to other states and ability to transition to other states (ie, be “sick” and then become “well”) (Beck 422). Based on the distinct values established for the various Markov states, the ability to improve one’s health, as measured by life expectancy, can be measured (Beck 425). 


� Chemoprevention is this case is considered treatment with tamoxifen. 


� These values are obtained from Anderson, et.al.’s (2006) “Cost Effectiveness of Preventative Strategies for Women with a BRCA1 or BRCA2 Mutation.” Anderson, et.al. updated the costs obtained in Fireman, et.al’s (1997) “Cost of Care for Cancer in a Health Maintenance Organization.” Fireman, et. al. obtained these figures from Kaiser Permanente, a health maintenance organization that serve the Bay Area in Northern California. Based on the data obtained from 21,977 patients, Fireman, et. al. analyzed the average costs for various types of cancer (including breast cancer) for initial, continuing and terminal care. 


� These values are in 2009 dollars. Anderson et.al updated Fireman et.al’s study to 2004 dollars (Anderson Cost 400). 


� While realistically the annual premium would not intend to cover an additional year of anticipated medical costs, this model considers a risk of developing breast cancer over the course of ten years and therefore, the costs over more years should be considered. 


� In 2004 dollars, the yearly cost was $6,784 (Anderson Cost 400). 


� The average cost of the mastectomy procedure in 2009 dollars would be $12,837.01 (Consumer Price). The average cost of both prophylactic mastectomy and salpingo-oophrectomy together would be $18,086.30 (Consumer Price). The procedures also require inpatient hospitalization which would vary based on the success of the procedure, the patient’s ability to recover and the severity of the procedure. 


� For example, the cost of undergoing mastectomy in a private hospital in Chicago would likely be more expensive than the same procedure done in a government-owned hospital in the suburbs of Chicago. 


� According to Folland, et. al, the cost which affects the insurance company’s profits includes the cost of treatment and administrative costs. 


� Cell F7 of Figure 4.5.2 contains the formula used to calculate the administrative cost of the general population. 


� “Large group” insurance includes employers who provide coverage to fifty or more employees (Litow 9). 


� While “simulation” indicates a model designed to make predictions about a realistic scenario, “Monte Carlo” refers to the random aspect of the model which is based on probabilities (Barreto 215; Wittwer). 


� As shown in Cell H2 of Figure 4.5.2, the NORMALRANDOM function is used which randomly chooses values from a normal distribution, given an average and standard deviation (Barreto 223). The formula written =NORMALRANDOM(average, standard deviation). 


� Refer to Figure 4.5.5. 


� A histogram is a graph which  summarizes distribution of numbers in a data set (Six Sigma). The width of bars represents the class which the variable has been divided and height represents the frequency of numbers (American Heritage Dictionary). 


� For example, Monte Carlo simulations were run when the premium was set at $1,000, 2,000, 3,000, etc. 


� Columns A through H of Figure 4.6.2 parallel that the of the general population group found in Figure 4.5.2. Columns J through Q of Figure 4.6.2 parallel that of the high-risk population group found in Figure 4.5.4. 


� In the Excel raw data spreadsheet displaying the Monte Carlo results, the =AVG(a2:a10001) function was used to take the average for the 10,000 outcomes that the Monte Carlo produced. This procedure was repeated for the number of clients, number of sick clients, revenues, costs and profits. 


� The average profit for $3,000 was $69,577,438. 


� See “Average Profit” when the insurance premium is $3,200 in Figure 4.7.3. 


� See Figure 4.7.4. 


� Refer to Figure 4.7.6. 


� Refer to the data in Figure 4.7.7. 


� Refer to Figure 4.7.9. 


� Using the formula of standard deviation = sqrt (SD1^2+SD2^2), this was mathematically verified. 


� According to Figure 4.7.10, the average profit was greatest when the premium was $4,000, resulting in a profit of approximately $76,237,951. 


� Refer to Figures 4.7.12 and 4.7.13.  


� See Figure 4.7.9. 


� This assumes that health insurance premiums are based solely on the risk of breast cancer indicated by BRCA mutation tests. 


� See Figures 4.7.9 and 4.7.12 


� In this case, Gibbard and Varian define model as “involved whenever there is economic reasoning from exactly specific premises.” (Gibbard 666). 


� In addition to Monte Carlo, other simulation models include scenario analysis and “what if” analysis. Scenario analysis estimates the expected and preferred results but does not provide a distribution of results. Similarly, “what if” analysis provides values of the projected outcomes but is considered too tedious to be an effective modeling technique (What is Monte Carlo).


� Although Colorado States’ explanation “What is Monte Carlo Simulation?” specifically considers micro-watershed forecasting under uncertainty, the reasoning applies to the model on breast cancer risk assessment.


� Survey was done by the National Society of Genetic Counselors Special Interest Group in Cancer (Fulda 144). 


� According to the U.S. Census Bureau, the number of people with private insurance decreased from 202 million to 201 million and employer-based insurance declined 177.4 million to 176.3 million from 2007 to 2008(CBO, 2010). 


� The number of people with government sponsored health insurance rose from 83 to 87.4 million from 2007 to 2008 (US Department of Health, 2010). 





� Pricewaterhouse Coopers’ data is a compilation of interview, literature review, analysis of data and professional expertise (PricewaterhouseCoopers, 2010).


� For example, if an individual earns an income of $80,000, it will cost him or her $800 for the penalty fee in 2014, $1,600 in 2014 and $2,000 in 2016 (Democratic Party Committee, 2010).  
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