Gateway to Business Analytics

with Microsoft Excel ${ }^{\circledR}$

Humberto Barreto
Professor of Business
DePauw University

2024

OPEN ACCESS
2024 CC BY SA

This book was typeset in EATEX with various packages in TeXstudio, I was helped repeatedly by resources at tex.stackexchange.com. I am awed by this software and its community. I offer a deep bow to those who made these tools freely available and continue to provide support.

Humberto Barreto

May 9, 2024

COPYRIGHT CC BY SA 2024
open - Access
You are free to:
Share - copy and redistribute this material in any medium or format.
Adapt - remix, transform, and build upon the material for any purpose; such as extracting pages, editing text, or modifying this pdf and/or Excel files however you wish.

I cannot revoke these freedoms as long as you follow the license terms below:
Attribution - You must give me appropriate credit, provide a link to this book (you can use www.depauw.edu/site/learn/econexcel/busanalytics), and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests that I endorse you or your use.

ShareAlike - If you remix, transform, or build upon the material, you must distribute your contributions under this same license.

No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

ACKNOWLEDGMENTS

While they did not work with me closely on this book, the materials bear the imprint of my long-time colleagues: Frank Howland, Kealoha Widdows, and Michele Villinski.

Tami Barreto copy edited this manuscript, like almost everything else I have written. She has fixed countless mistakes and greatly improved the exposition.

My students in BUS 110 at DePauw University used these materials as the textbook for the course as we launched our new School of Business and Leadership in fall 2023. They gave me valuable and constructive feedback.

Thank you all.

For Simon

Contents

Preface vii
1 Defining Business Analytics 1
2 Optimization 7
2.1 The Lifeguard Problem 7
2.2 Comparative Statics 16
2.3 Solver 24
2.4 Practice Problem 33
3 Monte Carlo Simulation 37
3.1 Free Throw Shooting 37
3.2 Parrondo's Paradox 50
3.3 Pooled Testing 61
4 Growth 79
4.1 Growth Math 79
4.2 Growth Data 94
4.3 PV and IRR 108
4.4 College IRR 118
5 Unemployment 127
5.1 FRED Excel add-in 127
5.2 Unemployment by Subgroups 139
5.3 Seasonal Adjustment 147
6 Constrained Optimization 155
6.1 Maximizing Utility 155
6.2 Constrained Utility Maximization 165
6.3 Comparative Statics 170
6.4 Elasticity 177
6.5 Cost Minimization 187
7 Yield Curve 193
7.1 Bond Basics 193
7.2 Yield Curve Visualizations 203
8 National Income Accounting 211
8.1 GDP and Macroeconomic Volatility 211
8.2 International Comparisons 222
9 Introduction to VBA 227
9.1 Macros in Excel 227
9.2 Functions in VBA 233
10 Demographics 239
10.1 Visualization 239
10.2 Demographics Analytics 251

Preface

Think of Business Analytics as a big city. Then this book is a gateway to a crowded downtown with bright, neon lights. There is so much to see and do! Gateway to Business Analytics with Microsoft Excel shows you the sights via spreadsheets. This allows you to acquire a great deal of sophisticated, advanced Excel skills while sampling from a variety of engaging topics at an introductory level.

The use of Excel drives other differences. Spreadsheets require concrete, numerical problems instead of abstract functions and graphs. Constructing models takes time and effort, but the payoff is that you are able to see how changes in cells affect graphs and other results.

Business Analytics is a rapidly growing sub-discipline that is not well-defined. Content and level of presentation vary widely. This book delivers a coherent set of topics appropriate for first- or second-year college students. No specialized training in Excel, calculus, statistics, or programming is needed.

For example, instead of using calculus to solve optimization problems, we use Excel's Solver. Instead of reading a description of GDP and national income accounting, we use the FRED Excel add-in to download data and show that it is really true that $\mathrm{GDP}=\mathrm{C}+\mathrm{I}+\mathrm{G}+\mathrm{NX}$.

I am a veteran Economics professor and I have written several books and many articles using Excel to teach economics. Excel-based teaching has really helped my students learn economic theory and econometrics. I am excited to try this approach to deliver content in business analytics.

May your intellectual journey be as rewarding and fun as it has been for me.

Humberto Barreto
hbarreto@depauw.edu
Greencastle, Indiana

Defining Business Analytics

What exactly is Business Analytics? The business part is easy, it means a commercial operation or a company. Business is often associated with entrepreneurship and management.

Analytics is a little harder-it is the systematic computational analysis of data. So, simply put, number crunching. Figure 1.1 shows how the word analytics has exploded in use, according to Google's Ngram Viewer.

Figure 1.1: Use of the word analytics in a large corpus of books over time. Source: https://books.google.com/ngrams

Before this century, it was not often used, but now analytics is applied to many different fields, such as marketing analytics or baseball analytics. The word analytics is shorthand to indicate the use of quantitative or statistical methods to study something.

Putting the two words together, Business Analytics is the study of business with a special emphasis on numbers, data, and quantitative information.

More succinctly, Business Analytics is all about this question:
"What do the numbers say?"
The answer to this question can be approached in three different ways:

1. Process
2. Explain
3. Decide
4. Process: Decode and analyze data to extract information. Most people do this constantly without even realizing it. For example, when reading a menu at a restaurant, the numbers tell you the prices of different dishes and you can add items together to estimate the total cost of your meal. You would, however, be unlikely to figure out how much revenue the restaurant made from each item if you were handed a stack of receipts for an entire year! A business analyst has specific knowledge of a variety of quantitative methods and skills to crunch the numbers and tell us what the numbers say.
5. Explain: Communicate to others what the data show such as with data visualization. This time, we focus on interpretation of the data and presenting it in a way that others can understand. Our role is not that of a CEO (chief executive officer), but a CIO (chief information officer). Others will use how we present what the numbers say to make informed decisions.
6. Decide: Make a decision about what to do based on what the numbers say. A business analyst creates models and runs simulations to determine a best option or choice from a variety of alternatives. This is data-driven decision-making. The question becomes "What do the numbers say to do?"

PED, process, explain, and decide, is what business analysts do. They are comfortable using a variety of technologies and think with numbers. Business analysts are not mathematicians and they do not necessarily develop software or algorithms, instead, they apply tools and methods to answer business-related questions.

Another way to think about Business Analytics is by comparing literacy and numeracy. To be literate means you can read and write. It is a continuum, knowing more words increases your literacy. Numeracy is the ability to work with numbers and the mastery of mathematical tools. Business Analytics is built on numeracy-we process, explain, and decide with numbers as a foundation and guide.

Business Analytics is an interdisciplinary area of study that borrows from Mathematics, Statistics, Computer Science, Finance, Economics, and anywhere else that emphasizes quantitative analysis in the study of business. The borders of Business Analytics are not well-defined and the field easily blends into other areas, such as Data Science (which is more aligned with Computer Science). It can be difficult to pin down exactly what falls under the broad umbrella of this exciting new area since it accepts input from any source.

A critical, underappreciated aspect of Business Analytics is ethics. Just because you can do something does not mean you should-no matter how technically sophisticated and impressive. Or, put another way, what the numbers say to do may be the wrong thing to do because it is unethical or immoral. This is worth remembering.

Getting Ready

This book is a manual for actively working with and manipulating content in Excel. There are, however, many versions of Excel-which one is needed?

Use Windows (not Mac) desktop (not browser) Excel.
The best solution for Mac users is to emulate Windows with software such as Parallels or Boot Camp. For students at an educational institution, accessing a Windows machine from a server (see, for example, VMWare's Horizon software) is an easy solution for Mac users. Students at my university can login at desktops.depauw.edu from a Mac, Chromebook, or tablet (anything that has a browser) to access a Windows machine with desktop Excel (and other Office applications).

Online versions of Excel do not support Visual Basic and other advanced features. Thus, you cannot get full functionality using Excel within a web browser. Do not use Excel in a browser to do the work in this book.

In addition to Windows desktop Excel, you need your brain. This book presumes that you have seen a spreadsheet before. You can open Excel and write a formula that adds cells together. As you will see, however, Excel is much more than a simple adding machine. You will learn how to use Excel in much more advanced ways. In addition to analyzing data and learning many new Excel functions, you will learn how to use special Excel files called add-ins that solve optimization problems and run simulations.

The most important thing you can do as you read this book is experiment. You might find yourself wondering, "What would happen if this cell was 10 instead of 1?" Do not just wonder, change the cell and see what happens! There is deep neuroscience at work here. When you are in control and making up your own questions, you learn best. The beauty of this approach is that everything is alive and you can make points move and lines shift. Take full advantage. Be engaged.

EXCEL TIP Never settle for passive reading. Always do the steps and experiment as you work, changing things to see what happens.

Finally, if something is not working the way you expect, there are many possible causes. It is always a good idea to close Excel completely and reopen it. Even if this does not fix the problem, slowly repeating the steps will help you debug or describe what is happening.

In addition to generative AI (such as ChatGPT), I recommend these websites for Excel tips, tricks, and problem-solving:

- Tushar Mehta: www.tushar-mehta.com/excel/
- Chip Pearson: www.cpearson.com/excel
- Jon Peltier: peltiertech.com/Excel/
- Andy Pope: www.andypope.info

References

The epigraph is from the chapter on Target in Charles Duhigg's The Power of Habit. Duhigg tells the story of how Target was one of the first retailers to monetize customer data. Target's success is also an early cautionary tale as it faced intense backlash when its customers learned that Target somehow knew before family members that someone in the house was pregnant.

Optimization

2.1 The Lifeguard Problem

You are a lifeguard on a beach. You are standing on the shore, the water laps at your feet as the sun shines on your face. You timed yourself the other day and you ran 100 meters in 20 seconds. You are much slower than the other lifeguards, but you are a super-fast swimmer. You can swim 100 meters in 50 seconds - that's only a few seconds off the freestyle world record! You like numbers and a thought pops into your head, "It's funny that I'm a slow runner and fast swimmer, yet I can still run 2.5 times faster than I swim-my run speed is $5 \mathrm{~m} / \mathrm{sec}$ while my swim speed is $2 \mathrm{~m} / \mathrm{sec}$."

Suddenly, you see someone frantically waving in the water and hear cries of "Help!" They are exactly 100 meters to your right and 100 meters from the shore. Figure 2.1 shows the positioning. Your training kicks in and you take off running along the shore towards the drowning person. Your goal is to get to them as quickly as you can. Your mind is consumed by a critical question, "When do I dive in and start swimming?"

Figure 2.1: Initial Positions of the Lifeguard and Victim.

Before we implement and solve this problem in Excel, let's agree that you do have a decision to make. Consider these two paths:
(A) Based on the logic that you're a faster runner than swimmer, you could run 100 meters along the shoreline in 20 seconds and then swim 100 meters in 50 seconds and you would reach the drowning person in 70 seconds. This path is the shortest swimming distance.
(B) On the other hand, you could argue that it is better to just dive into the water and make a beeline to the victim because this is the shortest total distance. The Pythagorean Theorem says that the hypotenuse is about 141 meters $\left(\operatorname{sqrt}\left(100^{2}+100^{2}\right)\right)$. This is much shorter than the 200 meters total distance required by Path A.

The problem, however, is not to minimize swimming distance or total distance, but time - you have to get to the drowning victim as soon as possible. We know Path A takes 70 seconds, but what about Path B?

Path B takes a little longer than A. Here is the algebra involved in the computation:

$$
\text { time }=\frac{\text { distance }}{\text { speed }}=\frac{141 m}{2 \frac{m}{\text { sec }}}=70.5 \text { seconds }
$$

Thus, running 100 meters and swimming 100 meters is better than swimming about 141 meters because 70 seconds is a little less than 70.5 seconds. The advantage of Path B, less distance, is counteracted by the fact that you have to swim more and you are a much slower swimmer than runner. The advantage of a shorter total distance is outweighed by the disadvantage or cost of having to swim more.

You might think that we are done since we figured out that Path A is better than B, but we have just scratched the surface of the lifeguard problem. Figure 2.2 shows that there are not only two paths. You can dive in immediately or run 100 meters and then swim or choose any any distance in between! The problem is to find the best, fastest path.

Figure 2.2: Of the many paths, which is the best, fastest path?
The lifeguard problem can be solved analytically, with calculus and algebra, but we will not do that. Instead, we will use numerical methods: an algorithm is used to get an approximate result. We will implement the problem in Excel and use Excel's Solver add-in to find the correct answer.
$S T E P$ Open a blank Excel workbook and save it as LifeguardProblem.xlsx. Enter the numbers and labels shown in Figure 2.3. Make sure your Excel workbook looks exactly like Figure 2.3 because we will be referencing specific cell addresses below.

	A	B	C
1	Exogenous Variables		
2	100 Distance Away on Sand, m		
3	100 Distance Away in Water, m		
4	5 Max Run Speed, $\mathrm{m} / \mathrm{sec}$		
5	2 Max Swim Speed, $\mathrm{m} / \mathrm{sec}$		
6			
7	Endogenous Variables		
8	0 Distance Run, m		
9	141.4214 Distance Swim, m		
10			
11	Goal		
12	70.71068 min Time to Victim, sec		

Figure 2.3: Setting up the problem in Excel.

Exogenous variables cannot be changed by the decision-maker. From the Greek, exo means outside, like a lobster's exoskeleton. Exogenous variables are outside or beyond our control. They are also known as independent, given, or constant variables. They are parameters that are part of the decision-maker's environment.

You certainly cannot control where the victim is drowning. If you could, the problem would be trivial - you would put them right at your feet and pull them out. So, the location of the drowning swimmer is exogenous, 100 meters away on the sand and 100 meters from the shore in the water.

Your run and swim speeds are also exogenous. You might think you can control how fast you run and swim, but these are not the actual variables. As the labels show, "Max Run Speed" and "Max Swim Speed" are your fastest run and swim speeds. We are assuming you are going all out to save the victim. Sure, you could train to get faster, but at that moment when you are trying to save the victim, your max speeds are given. The fastest you can (and will) run is $5 \mathrm{~m} / \mathrm{sec}$ and the fastest you can (and will) swim is $2 \mathrm{~m} / \mathrm{sec}$.

To really cement the concept of exogenous variables, ponder this: If you were waiting to order at the drive-thru at your favorite fast-food restaurant, can you think of a few exogenous variables? What makes the variables you chose exogenous?

Endogenous variables are the ones the decision-maker sets and determines. Since endo means inside in Greek (you have an endoskeleton), endogenous variables are within your control. They are also known as choice or dependent variables. What to drink is endogenous to you at the fast food restaurant.

You decide how far you will run from zero (dive right in and start swimming, Path B) to 100 meters (Path A) so this is the endogenous variable in this problem. Notice that deciding how far to run immediately determines how much you will swim since you will always swim in a straight line along the hypotenuse formed by the triangle of where you entered the water (see Figure 2.2). We can Use Excel to demonstrate this.
$S T E P$ Enter the formula $=\operatorname{SQRT}\left((\mathrm{A} 2-\mathrm{A} 8)^{\wedge} 2+\mathrm{A} 3^{\wedge} 2\right)$ in cell A 9 and press Enter. You will know you did it correctly if Excel displays something close to 141.4217. The formula computes the hypotenuse for any value of cell A8. Excel treats the value of the blank cell A8 as zero so A2 - A8 is 100 and we get the hypotenuse of Path B (shortest total distance).

EXCEL TIP Maximize flexibility of your spreadsheets.
It would have been easier to enter and read the formula if we hard-coded the distance away on sand and in water like this: $=\operatorname{SQRT}\left((100-\mathrm{A} 8)^{\wedge} 2+100^{\wedge} 2\right)$, but we would lose the flexibility of being able to change these variables and have the formula automatically update. In general, you want to develop spreadsheets that depend on other cells and not on numbers.
$S T E P$ To make sure the formula works well, let's check Path A: enter 100 in cell A8. Cell A9 should also display 100. If not, return to the previous step and fix the formula.

In addition to exogenous and endogenous variables, every optimization problem has to have a goal, known more formally as an objective function. For the lifeguard problem, this is minimizing the time it takes to get to the victim. The goal always has to be a function (in Excel, a formula) that depends on the endogenous variables.
$S T E P$ Enter the formula $=\mathrm{A} 8 / \mathrm{A} 4+\mathrm{A} 9 / \mathrm{A} 5$ in cell A12 and press Enter. You will know you did it correctly if Excel displays 70 (with cell A8 at 100) since we know this is how long it takes for Path A.

Having set up the optimization problem in Excel, with exogenous and endogenous variables, along with a goal, we are now ready to find the best path. We begin by manually trying a few different paths.
$S T E P$ set cell A8 to 50 and notice the time to victim. Try 25 and 75. Keep playing with cell A8 until you think you've found the best answer.

Cell A8 should now be in the mid 50s and the time to victim should be around 65.8 seconds. That's several seconds better than path A or B-this could mean the difference between life and death!

Not many people try fractional distances, but this is perfectly acceptable. Of course, we are not going to hunt and peck for hours, changing A8 by 0.001 to see the effect on A12. Instead, we will use Excel's Solver. Hunting and pecking (or its twin, plugging and chugging), but really fast, is exactly what Solver does.

Excel's Solver is an optimization algorithm. It tests many trial solutions very quickly, converging to an answer. Later, we will explore how it works in more detail. Right now, let's see it in action.
$S T E P$ Click the Data tab (in the Ribbon across the top of the screen), then Solver (in the Analysis group) to bring up the Solver Parameters dialog box. If Solver is not available, then use the Add-in Manager to install it. Use Excel's Help if you are having trouble or visit support.office.com.

EXCEL TIP Press alt, t, i to access the Add-in Manager.
Press the alt key, then release it and press the letter t, then release it and press the letter i to quickly bring up the Add-in Manager.

The Solver Parameters dialog box is initially empty. You need to give it the appropriate information before asking it to search for a solution. It always needs specific cell addresses for the Objective and Changing Variable Cells inputs. Some problems are constrained and require further input, but the lifeguard problem does not.
$S T E P$ Do these three things: 1) Click in the Set Objective input field and select cell A12 by clicking on it. 2) Click the Min radio button. 3) Click the By Changing Variable Cells input field and select cell A8. Your screen should look like Figure 2.4. If not, make it so.

Figure 2.4: The Solver Parameters dialog box.
$S T E P$ click the Solve button in the bottom right corner of the Solver dialog box, read the Solver Results dialog box, and click OK.

You did it! You found the correct answer to the lifeguard problem! By running about 56 meters before jumping in, you will reach the victim in a little under 66 seconds and this is the smallest possible time. We can see that this is a true minimizing solution by exploring a small move away from Solver's solution.
$S T E P$ Change cell A8 to 57 and you can see that cell A12 increases a little bit. Decrease cell A8 to 55 and, once again, cell A12 goes up. That is pretty convincing evidence that Solver has the correct answer since the values around it yield higher times to reach the drowning person.

There is more to do, but let's recap. We modeled an optimization problem, implemented it in Excel, and used Excel's Solver to find the optimal solution. There are other ways to solve optimization problems, but Solver offers a pretty simple approach-as long as you can set up the problem in Excel, Solver has a shot at solving it. We will see in future work that Solver is not perfect, but on a simple problem like this one, it is reliable.

Excel's Solver is an example of numerical methods. Its answer is not exactly correct, but it is so close that, practically speaking, it is the right answer. This problem can be solved analytically to get an exact solution and doing so yields something called Snell's Law. Physicists have known for a long time that light refracts when it goes through a different medium than air, like water. As Fermat realized in 1650, light is taking the fastest path and this is why it bends when it hits water.

There are some pretty mind-boggling applications of minimizing time across different media from the natural world. Some people think dogs can find the optimal path (Pennings, 2003 and Perruchet and Gallego, 2006) and so can ants, as shown in Figure 2.5. As described in the caption, the green area is rough felt that is harder to walk on. The ants do not go in a straight line to the food (like they do in a control setting with only the white, smooth surface). The authors call this decentralized optimization because the ants are working together without any direction from an authority telling them what to do.

Figure 4. "Refracted" trail of W. auropunctata workers at the medium border between smooth (white) and rough (green) felt.
The position of the food is on the rough felt. Note that the density of workers on the rough felt is higher than on the smooth felt because travel speed is lower. In addition it appears, although not very obvious, as if the ants on the rough felt 'float' on top of the felt hairs, indicating the difficulty of walking on this substrate. Photograph kindly provided by Simon Tragust.

Figure 2.5: Ants Solving the Lifeguard Problem.
Source: Oettler, et al., 2013

Let's close with a crazy thought experiment. What would happen if you were suddenly transformed from a slow runner, near Olympic swimmer to a freakish mix of Usain Bolt and Michael Phelps? Not only are you a really fast swimmer, you also can run 100 meters in 10 seconds, so your maximum run speed is a blazing $10 \mathrm{~m} / \mathrm{sec}$. How does this shock (change in the maximum run speed exogenous variable) affect your decision of how far to run?
$S T E P$ Change cell A4 to 10 and run Solver.

Does Solver's new optimal solution make sense when compared to the initial answer?

Takeaways

We introduced and solved the lifeguard problem: to get to a drowning swimmer as quickly as possible, the lifeguard has to choose the best path.

This is a well-known problem in physics and optics because light bends (refracts) when it goes through a different medium, like when it hits water.

There are several different analytical formulas, but we used Solver (a numerical method) to find the fastest path.

We had to implement the problem in Excel, creating an objective function that depended on a changing cell. We then called Solver and it generated the correct solution.

References

The epigraph of this chapter can be found in section 26-3 of the online edition of Feynman's famous Lectures on Physics. He explains what Fermat did and gives the analytical solution.

For a fun visualization of the lifeguard problem, see geogebra.org/m/wBcKASpN
Oettler, J., Schmid, V., Zankl, N., Rey, O., Dress, A., and Heinze, J. (2013) "Fermat's Principle of Least Time Predicts Refraction of Ant Trails at Substrate Borders," PlosOne, open access: doi.org/10.1371/journal.pone. 0059739

Pennings, T. (2003) "Do Dogs Know Calculus?" The College Mathematics Journal, 34(3) (May, 2003), pp. 178-182. jstor.org/stable/3595798

Perruchet P. and Gallego, J. (2006) "Do Dogs Know Related Rates Rather than Optimization?" The College Mathematics Journal, Vol. 37, No. 1 (Jan., 2006), pp. 16-19. www.jstor.org/stable/27646266

2.2 Comparative Statics

When maximum run speed increases from 5 to $10 \mathrm{~m} / \mathrm{sec}$, you run longer and dive in after running nearly 80 meters. Thus, you run roughly 23 meters more than when your max speed was $5 \mathrm{~m} / \mathrm{sec}$. This is about a 40% increase $\left(=\frac{23}{56}\right)$. Running more (and swimming less) makes sense, after all, you are much faster running now that you are a world-class sprinter so you should take advantage of this.

Changing an exogenous variable while holding everything else constant (called ceteris paribus) is known as comparative statics analysis. It is comparative because you are comparing the new to the initial optimal solution and it is statics because you focus only on the beginning and the end, ignoring any kind of adjustment process (which would be dynamic analysis).

One way to understand what we are doing is by creating a simple graph to show the optimal solution. The x-axis will be how far we run before diving in and the y-axis will be the corresponding time.
$S T E P$ Using the initial problem (make sure cell A4 is set to 5), enter the labels Distance Run, Distance Swim, and Time to Victim, in cells G1, H1, and I1, respectively. Create a series from 0 to 100 by 5 by entering 0 in cell G2, 5 in cell G3, and then filling it down. In cell H2, enter the formula for the hypotenuse based on the value in cell G2. Fill down. Compute the Time to Victim in cell I2 and fill it down. Check your numbers with Figure 2.6 and if there are any discrepancies fix your formulas or, if you cannot do it, proceed to the appendix to get help.

Now that we have data for how Time to Victim responds to Distance Run, we can visualize the lifeguard problem by creating a chart. You may know how to make a chart in Excel, but it is worth reviewing basic charting principles before diving in.
$S T E P$ click the link and watch this 3-minute video on making a chart in Excel: vimeo.com/econexcel/how-to-chart-in-excel

Selecting data, clicking the desired chart type, and cleaning up the chart are the three steps. Always check the axes and titles and avoid the dreaded "Series 1" legend text like the plague. Stay away from chartjunk (wild colors and crazy fonts). Best-practice is minimalist-let the data speak for itself (Tufte, 1983).
$S T E P$ Make a Scatter chart of Time to Victim as a function of Distance Run. Check that your chart looks like Figure 2.6.

Figure 2.6: Visualizing the Lifeguard Problem

Figure 2.6 shows pretty clearly that the optimal solution is at the bottom of the U-shaped Time to Victim function. The lifeguard really does face an optimization problem. Correctly solving it means the lifeguard will get to the drowning person as fast as possible.

We can highlight the optimal solution and learn how to add controls to a spreadsheet. The Developer tab needs to be visible on the Ribbon. If it is not, click File, then click Options, then click Customize Ribbon, and check the Developer item.

With the Developer tab available in the Ribbon, we are ready to add a scroll bar. First, we will get a coordinate point, then we will add it to the chart, and, finally, we will connect it to a scroll bar control.
$S T E P$ select cell range G22:I22 and copy (ctrl-c), select cell G24, and paste (ctrl-v). In cell G24, enter the formula $=A 8$ so that we have the optimal solution.

To add this single point to the chart, we will use a powerful, advanced method: we will directly edit the SERIES formula. This approach allows you to easily and quickly reuse or update a chart.
$S T E P$ watch this 5 -minute video on how to modify the SERIES formula in a chart: vimeo.com/econexcel/using-series-formula.

We can now add the single point to the chart by copying the existing SERIES formula and editing it, replacing the x and y axes data with the cell addresses of the single point.
$S T E P$ click on the Time to Victim function (click on one of the points), copy, press the ESC key (to clear the formula bar), click on the northwest corner of the chart, paste, and then edit the SERIES formula so it looks like this: =SERIES(Sheet1!\$I\$1,Sheet1!\$G\$24:\$G\$24,Sheet1!\$I\$24:\$I\$24,2)

Notice the 2 at the end - this ensures that the point is always visible because it is on top of the first series. To highlight it further, increase the size of the point by clicking on it and increasing the width of the marker size to 5 pts.

You can enter any number from 0 to 100 in the cell A8 to display that point on the Time to Victim function. We can make it easy for the user to move the point on the chart by adding a scroll bar connected to cell A8.
$S T E P$ click the Developer tab on the Ribbon, click the down arrow in the Insert button, and select the scroll bar icon (in the top, Form Control group) as shown in Figure 2.7. Click and drag on the spreadsheet (roughly under the chart) to create the scroll bar control.

Figure 2.7: Accessing the scroll bar form control.
$S T E P$ Right-click the scroll bar control (that you just created), click the Control tab, click in the Cell link field, and click cell G24 (it appears in the field). Click OK and click on a cell in the spreadsheet. Click a few times on the scroll bar to make the red dot on the chart move along the Time to Victim function.

You can also click the scroll box itself (sometimes called a thumb) and drag it. You can also manually change the value in cell G24 and the scroll bar box will reflect that value.
$S T E P$ Enter the formula $=\mathrm{A} 8$ in cell G24 to display the optimal solution and see that scroll box moves to this value.

We now have a clear display of the optimal solution and understand that it minimizes Time to Victim, but the correct solution depends on the exogenous variables. What happens, for example, when you become Usain Bolt and can run, not $5 \mathrm{~m} / \mathrm{sec}$, but $10 \mathrm{~m} / \mathrm{sec}$?
$S T E P$ Change cell A4 to 10 and watch what happens.
Excel immediately updates the chart and the changes are dramatic. It is clear that the function has shifted down and there is a new minimum to the right of the initial solution.

How can we compare the two situations? One way is by displaying the two environments (initial with $5 \mathrm{~m} / \mathrm{sec}$ and new with $10 \mathrm{~m} / \mathrm{sec}$) on the same chart. We can do this with a clever trick that has many applications: create a transparent image and lay it on top of the chart.

To make the comparison display correctly, we need to lock down the y-axis in the chart.
$S T E P$ Right-click any number on the y-axis and change the minimum and maximum axis bounds to 55 and 75 , respectively. Change the major unit to 5.0.

If the step above is skipped, the "chart stacking" strategy will not work because Excel will automatically adjust the y axis scale. Manually setting and fixing the scale is a necessary step when stacking charts.
$S T E P$ click the chart, click the Format tab in the Ribbon, click Shape Fill, and select, No Fill. Click and drag the chart around a little to see that it is transparent.

The cell borders are now visible and this is distracting so we will remove them.
$S T E P$ Click Page Layout in the Ribbon and uncheck View under Gridlines (in the Sheet Options group).

The chart is still transparent, but there are no cell borders so the chart's background is white.
$S T E P$ select and copy the chart, then click on a cell (to unselect the chart). Click the down arrow on the Paste menu item (in the Home tab) and click on the picture icon as shown in Figure 2.8.

Figure 2.8: Pasting as a Picture.

The chart you just pasted is "dead" in the sense that it is a fixed image and is not connected to the data like the original chart. It can be pasted in a doc or slide and will not change even if you alter the data.
$S T E P$ Drag the chart you just pasted so it is exactly on top of the live, original chart. Add text boxes to label the initial and new solutions (remove the border and fill of the text boxes to improve the display).

Figure 2.9: Comparative statics visualization.

Your final product should look like Figure 2.9. It clearly shows the impact of the shock to running speed on the lifeguard problem. The entire function shifts down and the minimum moves to the right.

What other exogenous variables are there in the lifeguard problem that we ignored? Imagine yourself as a real lifeguard on a crowded beach, perched on a chair looking out over the ocean. What else would influence your decision of where to enter the water?

Takeaways

We shocked the lifeguard problem by changing max run speed from $5 \mathrm{~m} / \mathrm{sec}$ to $10 \mathrm{~m} / \mathrm{sec}$, ceteris paribus, and found that the optimal distance to run on the sand increased. This is an example of comparative statics analysis.

We visualized the lifeguard problem by creating a chart in Excel of Time to Victim as a function of distance run. This made it easy to see that we are working on a minimization problem and that the solution is at the bottom of the bowl.

Creating a chart in Excel always involves three steps:

1. Select the data: hold down the ctrl key to select non-contiguous cells
2. Insert the desired chart type: usually it is a Scatter chart, but Excel has many chart types
3. Clean up the chart: be sure to check the title, the legend text, and the axes labels

Data visualization is a mixture of art and science. In Excel, always remember the third step in charting: label axes, add a descriptive title and make sure the chart is clear and easy to understand. Be sure that the legend is needed and makes sense. A minimalist approach is best.

The bible of chart design is Tufte (1983). This classic preaches simple, clean chart design. Excel allows you to do all kinds of word art and color schemes. You should avoid this.

Excel is a complicated software with many features and capabilities. Understanding that a chart is really a SERIES formula is a big step forward. Directly editing the SERIES formula has many powerful applications.

The transparency trick is also quite useful. You are slowly building a library of skills and knowledge. There is not a single, specific thing that makes you an Excel expert. It is like a wall, every brick matters.

References

Tufte, E. (1983) The Visual Display of Quantitative Information (Cheshire, CT: Graphics Press). Open access: archive.org/details/visualdisplayofq0000tuft

For more on how graphs and data visualization evolved, see Friendly, M. and Wainer, H. (2021) A History of Data Visualization and Graphic Communication (Cambridge, MA: Harvard University Press).

Appendix

To replicate Figure 2.6, follow the steps below, but think about the formulas you are entering and what each cell is doing instead of mindlessly typing:

1) In cell H 2 , enter the formula $=\operatorname{SQRT}\left((\$ \mathrm{~A} \$ 2-\mathrm{G} 2)^{\wedge} 2+\$ \mathrm{~A} \$ 3^{\wedge} 2\right)$ and fill it down. Note that if you do not use absolute references (the $\$$ before cell column and row), then the formula does not work when you fill it down.

An absolute reference, like $\$ \mathrm{~A} \$ 2$, means when you copy and paste the cell (or fill it down), the formula remains unchanged and will continue to refer to $\$ \mathrm{~A} \$ 2$. A relative reference, like G2 (no $\$$ signs) means the formula will change because entering $=\mathrm{G} 2$ in cell H 2 means "the cell one column to the left of this cell."
2) In cell I2, enter the formula $=\mathrm{G} 2 / \$ \mathrm{~A} \$ 4+\mathrm{H} 2 / \$ \mathrm{~A} \$ 5$ and fill it down. Again, note the use of absolute references.

Both formulas were used earlier and neither hard-code the variables - in other words, cell addresses are used instead of numbers. This maximizes spreadsheet flexibility.

Use the ctrl key to select non-contiguous data to make the chart.

2.3 Solver

We know Solver is a numerical methods approach (as opposed to analytical) to solving an optimization problem. We saw it in action as it minimized the time it takes to reach the victim in the Lifeguard Problem for running speeds of $5 \mathrm{~m} / \mathrm{sec}$ and $10 \mathrm{~m} / \mathrm{sec}$.

This section is devoted to these two questions:

1. How does Solver actually work?
2. Can we always count on it giving us the correct answer?

The answer to the first question is explored in more detail below, but in a nutshell, Solver hunts and pecks really fast and converges to a solution. The answer to the second question is shorter: no. We will see that Solver can fail in two ways: miserable and disastrous. It can announce that it cannot find the answer (that is miserable) or, worse, it can claim to have an answer that is wrong. This is disastrous because you think it is right, but it is not. The bottom line is that you always need to be on high alert when using Solver-it is not a silver bullet.

How Does Solver Actually Work?

We begin our explanation of how Solver works with a simple profit maximization problem. A firm sells its product at $\$ 4 /$ unit and it has costs of production given by the square of the number of units it produces. So, it costs $\$ 9$ to make 3 units and $\$ 25$ to make 5 units. Since the price is $\$ 4$, the firm's revenue function is $4 x$. If it sells 3 units, it makes $\$ 12$, while 5 units generates $\$ 20$ of revenue.

The firm seeks to maximize profits (denoted by convention with Greek letter pi, π) which are equal to revenues minus costs. The profit function below says that 3 units produces $\$ 3$ of profit ($\$ 12$ of revenue minus $\$ 9$ of costs) and 5 units leaves the firm with a loss of $\$ 5$ since $20-25=-5$.

$$
\max _{x} \pi=4 x-x^{2}
$$

If you know calculus, you could solve this problem analytically by taking the derivative with respect to x, setting it equal to zero, and solving for x^{\star}. But even without calculus, the solution is obvious if you tabulate (a single entry table that lists the values of a function at discrete points) and graph the profit function.
$S T E P$ create data and make a chart of the profit function with the x-axis going from 0 to 5 in increments of 0.5 . If you have trouble, see the appendix.

Both the data you created and the corresponding chart show that the answer is $x^{\star}=2$ leading to maximum profits of $\$ 4$. Can Solver also find the optimal solution? Yes, it can.
$S T E P$ Use cell A17 for x and enter the profit formula in cell A18. Next, call Solver and fill in the dialog box and click Solve. Again, if you have trouble, see the appendix.

As expected, Solver finds the optimal solution, but how does Solver do it? In a word, iteration, which means repetition. Solver runs the three steps below over and over until it cannot improve much:

1. Using the starting value in cell A17 (this is zero if left blank), it evaluates cell A18.
2. It then moves away from the starting value. The amount it moves is determined by the particular recipe - a popular one (and Solver's default) is called Newton-Raphson steepest descent.
3. It compares the new value of profits to the original. If profits are higher, it continues in that direction. If lower, it goes in the opposite direction.

Solver continues iterating, changing cell A17 and checking how profits respond, until the improvement in profits is "small," an amount determined by the convergence criterion. The last change it made to cell A17 is the answer.

Figure 2.10: Solver in action.
The stylized graph (which means it represents an idea without using actual data) in Figure 2.10 shows that Solver works by trying different values and seeing how much improvement occurs. The path of the choice variable (on the x-axis) is determined by Solver's internal optimization algorithm. See FrontlineSolvers at https://www.solver.com/excel-solver-online-help to learn more about Excel's Solver.

When Solver takes a step that improves the value of the objective function by very little, determined by the convergence criterion (adjustable via the Options button), it stops searching and announces success. In Figure 2.10, Solver is missing the optimal solution by a little bit because, if we zoomed in on the graph, the objective function would be almost flat at the top. When Solver computes minuscule additional improvement, it stops and announces it has found a solution.

This is all too abstract. Let's see it in action.
$S T E P$ set cell A17 to 1.1 and widen column A to make sure it displays many decimal points. Call Solver, but this time, click the Options button and check Show Iteration Results (in the All Methods tab). Click Solve. Click Continue as many times as needed and watch the values on the spreadsheet.

Excel displays each trial solution. Solver might (this is not guaranteed) even hit 2 as a trial solution, but then it moves off it because it does not know this is the exactly correct answer.

It is quite likely that, starting from 1.1, Solver's answer is not exactly 2. You might have a result like this, 1.99999999467892 . When we say Solver got the answer, we mean this in a practical sense. If Solver is off the exact answer by a tiny amount, that is success, for all practical purposes.

There is a danger to avoid when using Solver (or any numerical optimization method that relies on convergence): it is easy to conclude that Solver must give an exact answer because it displays so many decimal places. This is incorrect. Solver's solution is an example of false precision. It is not true that the many digits provide useful information. The exact answer is 2 .

Usually, Solver does not find the exactly correct answer, yet it displays a number with many digits. This is Solver noise (a less technical way of saying false precision). You must learn to interpret Solver's results as inexact and not report all of the decimal places. You must use words like roughly or approximately when reporting answers produced by Solver.

In general, there are two reasons for really tiny disagreement between Solver and the exact answer.

1. Excel cannot display a number to an infinite number of decimal places. Most modern Excel software has 15 significant digits of precision. If the solution is a repeating decimal or irrational number, there is no exact decimal representation. Even if the number can be expressed as a decimal-for example, one-half is 0.5 - precision error may occur during the computation of the final answer.
$S T E P$ click in any cell and enter the formula $=\mathrm{pi}()$. Now select the cell displaying π and add decimal places by repeatedly clicking the Increase Decimal button, ${ }^{-00}$, in the Home tab, Number group in the Ribbon. When Excel displays "\#\#\#\#\#\#," it means the number does not fit in the column, so you need to widen the column. Keep adding decimal places until you start seeing zeroes. You have reached Excel's maximum precision.
2. Even if the answer is an integer, like 2, Excel's Solver often misses the exactly correct answer by small amounts. Solver's convergence criterion (that you can set via the Options button in the Solver Parameters dialog box) determines when it stops hunting for a better answer. Excel treats all of numbers the same - it has no way of saying, "Oh, that's really close to 2 so the answer must be 2."

False precision or Solver noise is a serious issue. Be aware that Solver's answer is likely not the exactly right answer. There are other ways in which Solver can fail us that are more serious than misunderstanding precision.

Solver Behaving Badly

A miserable result (an actual, technical term in the numerical methods literature) occurs when an algorithm reports that it cannot find the answer or displays an obviously erroneous solution. We can easily create an example.
$S T E P$ Copy your existing sheet (right-click the sheet tab in the bottom left-hand corner, select Move or Copy... and check Create a copy). Select cell B2 and delete the $-\mathrm{A} 2^{\wedge} 2$ part of the formula so you have only $=4^{*} \mathrm{~A} 2$. Fill down.

The chart updates and you have a straight line. You are graphing total revenue now instead of profits.
$S T E P$ select cell A18 and change the formula to $=4^{*}$ A17 (just like you did to the chart). Call Solver and click Solve.

You are looking at a miserable result. Solver cannot find a solution so it announces (loudly, with a red exclamation mark) that it cannot find an answer.

In this case, that is actually reasonable. After all, this function does not have a well-defined maximum, unless you want to argue that the answer is positive infinity.

Solver will also give a message like this if it cannot perform a computation such as dividing by zero or taking the square root of a negative number. The algorithm fails, which is bad news, but at least it tells you that it cannot solve the problem.

When Solver fails like this, there are three basic strategies to get Solver to find a solution (but nothing is guaranteed):

1. Try different initial values in the changing cells. If you know roughly where the solution lies, start near it. Always avoid starting from zero or a blank cell.
2. Add more structure to the problem. Include non-negativity constraints on the endogenous variables, if appropriate.
3. Completely reorganize the problem. Instead of directly optimizing, you can put Solver to work on conditions that must be met.

None of these approaches will work on this problem because it does not have a solution.

There is a second way in which Solver can behave badly and it is much worse than a miserable result. Solver can give an answer that is wrong, yet it thinks it is right and reports it as the solution. This is called a disastrous result. Again, we can create an example to demonstrate this.

Our example requires use of a more complicated cost function. Instead of the simple square we used earlier, we will use a cubic cost function, $a x^{3}+b x^{2}+c x$. By strategically choosing the coefficients, $a=1, b=-8$, and $c=19$, we can get a cost curve that will give us a profit function with a trough and a peak, like a sine wave:

$$
\max _{x} \pi=4 x-\left(x^{3}-8 x^{2}+19 x\right)=4 x-x^{3}+8 x^{2}-19 x
$$

$S T E P$ copy the original sheet again. Change cell B2's formula so it looks like this: $=4^{*} \mathrm{~A} 2-\mathrm{A} 2^{\wedge} 3+8^{*} \mathrm{~A} 2^{\wedge} 2-19^{*} \mathrm{~A} 2$. Fill it down.

The graph updates and now has a clear maximum near $x=4$, but also has a valley as we increase output starting from zero. Can Solver find the optimal solution with this more complicated cost function?
$S T E P$ Edit cell A18 so that it uses the new profit function. The formula should look like this: $=4^{*}$ A17-A17^ $3+8^{*}$ A17^2-19*A17. Call Solver and click Solve. How did it do?

If you started from the original sheet's optimal solution $(x=2)$ or near the maximum, then Solver will work fine. Notice that Solver's answer is a little higher than 4 and remember that Solver's answer is not the exact optimal solution, but it is really close (off by 0.000001 or so).
$S T E P$ Change cell A17 to 1 and run Solver. What happens now?
You just saw a disastrous result. Solver said it got an answer, but it is wrong. Your spreadsheet is showing cell A17 is zero, but we know the correct solution is a little over 4. This is really bad and shows that we must always be skeptical of Solver. It is not a silver bullet and mindless reliance on its output is a recipe for disaster.

Can you figure out why Solver failed?
$S T E P$ To help you, look at the chart and remember that we started from $x=1$. Force your eyes to follow a straight line down from 1 (on the horizontal axis). You can see that you are to the left of the minimum of the profit function.

The fact that we are on a downward sloping part of the profit function explains why Solver failed. It started from there and the algorithm led it away from the true max (x becoming smaller) because profits rise (become less negative) as x decreases.

We can see that starting from near the maximum generates a good result because the function is a hill around the maximum. Moving away leads you to lower profits so the algorithm can find the correct solution.
$S T E P$ Start from 7 (set cell A17 to 7) and run Solver to see that starting values around the top of the hill enable Solver to succeed.

Will any starting value far away from zero work?
$S T E P$ start from 100, then try 10.
This is surprising. If you start too far from the maximum, Solver takes a big first step that leads it to the wrong answer. Notice, however, that Solver does not give any indication that something may be wrong. To be clear, with a disastrous result, the computer's answer is incorrect, but you have no way of knowing this. That means you always have to be skeptical and vigilant when using Solver.

Unlike a miserable result where we know we have a problem, a disastrous result tricks us into thinking all is well. Even when Solver says it has an answer, you should question it. Try starting from a different place to see if you get the same answer. Always ask yourself if the answer makes sense. Be careful out there.

Takeaways

Solver is an example of a search algorithm. It works by exploring the objective function, like an ant crawling on a surface. If movement in a certain direction improves things, then it keeps going that way. Moves that generate worse results lead to reversing course.

Usually, this is an effective method. Many problems have solutions that can be found by numerical methods, using a computer to plug and chug through the problem.

Even when Solver finds the solution, always remember that its answer is not likely to be exactly correct. Solver usually suffers from what is formally known as false precision (and we call it, intuitively, Solver noise). This means that the last decimal places are not reliable and do not signal exactitude.

You want to be a sophisticated user and understand that, while powerful, Solver is not perfect. It can fail in two ways:

1) A miserable result is when Solver surrenders and announces that it cannot find an answer. This is disappointing.
2) A disastrous result is much worse. Solver says it has an answer, but it is wrong. This happens when you have a difficult problem, perhaps like asking an ant to find the highest point on a crumpled piece of paper. It is likely to find a local maximum, but not a true, global max.

Solver is a tool, like a chain saw. You can use it to cut down and trim trees really fast. You can also cut your leg off with it. Be careful.

Appendix

Charting the Profit Function

To make a chart of the profit function, begin with x-axis data. Create a label in cell A1 by entering the letter x. Below it, enter a 0 , then a 0.5 below that. Select both cells, then fill down to cell A12, which should display 5.

For the y-axis, enter the label, profits, in cell B1. In the cell below it, enter the formula $=4^{*} \mathrm{~A} 2-\mathrm{A} 2^{\wedge} 2$. Fill it down. Format the profit values as $\$$.

Select the data and make a Scatter chart. Remember to add labels for the axes and an appropriate title. Your chart should look like Figure 2.11.

Using Solver to Find the Optimal Solution

Enter the labels in cells B17 and B18 shown in Figure 2.11. Enter the formula $=4^{*}$ A17 - A17 2 in cell A18. Call Solver (click the Data tab in the Ribbon and click Solver), then click on cell A18 for the objective function and cell A17 for the changing cells (as shown in Figure 2.11). Click Solve and click OK when Solver displays its results dialog box.

Figure 2.11: Tabulating and charting $4 x-x^{2}$.

2.4 Practice Problem

Figure 2.12: Computer generated image of a farmer.
Source: https://stablediffusionweb.com/
Prompt: female hispanic farmer
Date Generated: July 8, 2023
You are a farmer. You buy seed, do a lot of work (till the soil, plant, irrigate, fertilize, and weed control), then harvest and sell your crop. To keep the optimization problem simple, we assume away almost all of this and ignore all labor, machinery, and any other costs except seed.

In our toy model, you simply buy seed, S, and it is transformed into output, say corn, via the function, $Q=100 \sqrt{S}$. For example, 64 pounds of seed makes 800 pounds of corn, 100 times the square root of 64 . This functional form reflects the fact that you have a fixed amount of land so planting twice as much seed less than doubles the amount of corn. The square root means that the more seed increases output, but at a decreasing rate.

You sell your output at the market-given price, P, of $\$ 8$ per pound. You cannot sell at a price higher than this because there are many other farmers willing to sell at $\$ 8$ per pound so no one would buy your harvest at a price above the market price. To be clear, 1,000 pounds of corn generates $\$ 8,000$ of total revenue.

The seed costs you $\$ 2$ per pound. You can buy as much seed as you want at this price so your total cost function is linear, $T C=\$ c S$, where c is the input price of seed. The total cost function tells us that, for example, 200 pounds of seed has total costs of $\$ 400$.

You want to buy the amount of seed that maximizes profits, which is total revenues minus total costs. You can see that choosing 100 pounds of seeds will get you $\$ 8,000-\$ 200=\$ 7,800$ of profits.

The question, however, is whether or not that's the best amount of seed to buy -in other words, is 100 pounds of seed the profit-maximizing solution? The questions below will lead you to an answer to this question and help reinforce what you know about Solver, data visualization, and comparative statics analysis.
$S T E P$ Open a blank Excel workbook and save it with an appropriate filename. Answer the questions below in the spreadsheet, saving the file after each question (in case there is a crash or other problem). For questions that require explanation, put your response in a text box (in the Insert tab on the Ribbon) with the question number.

1. What is the endogenous variable in this problem? Why is it endogenous?
2. Put the values for the output price of corn and input price of seed in two cells with labels next to them.
3. Implement this problem in Excel so that it is ready for Solver to work on it. You do this by adding other information in cells in addition to the cells you have from the previous question.
4. Use Solver to get the optimal solution.
5. The exactly correct answer is 40,000 pounds of seed with maximum profits of $\$ 80,000$. Since Solver does not give this exactly correct answer, do we say it is wrong? Explain.
6. Create a chart that displays the optimal solution.
7. What are the three steps in creating a chart in Excel? Did you do all three steps in the chart you made?
8. We know Solver can give miserable or disastrous results. What do these terms mean?
9. Does your chart give you confidence that Solver is not giving a disastrous result in this case? Explain.
10. Conduct a comparative statics analysis of changing the output price. Explain what you did and what you found.

RAND()

For the last question, you can change the output price to any number you choose, but you could also use Excel to generate a random number for the output price using the RAND() function. We will explain and use RAND() in the next chapter, but it is so easy to use and gives you a way to play with the exogenous variables in this problem that it is worth doing it now.
$S T E P$ In any empty cell, enter the formula $=R A N D()$ and press enter. Press the F9 key (you may have to use the function, $f n$, key to access F9 on your keyboard) repeatedly to see the number bounce around.

> EXCEL TIP The F9 key is a keyboard shortcut for Calculate Now in the Formulas tab in the Ribbon. It recalculates the sheet and updates functions like RAND, thereby displaying a new random number.

You cannot run Solver with an objective function that depends on RAND() because every time Solver puts down a trial solution, the cell with RAND() would recalculate. There are, however, several ways to "deaden" RAND() and turn it into a number. Perhaps the easiest uses the F9 key when you are in the formula bar of the cell.
$S T E P$ Copy your $\operatorname{RAND}()$ cell and paste it in another empty cell. Press F9 repeatedly to see two bouncing numbers. Select one of the cells with $\operatorname{RAND}()$ and then click in the formula bar. Press F9 and then enter.

You replaced the formula in that cell with a single number that will no longer change when the sheet recalculates. You could create a cell formula for the output price like $=\operatorname{RAND}(){ }^{*} 4+6$ to generate random output prices from 6 to 10 . You could get a specific, unchanging price by entering the formula bar of that cell and pressing F9. You can make many practice problems with different output prices with this method.

John von Neumann

Monte Carlo Simulation

3.1 Free Throw Shooting

You are the new kid on the block and it is time to choose teams at the rec center. You think you are pretty good so you say, "I'm a 90% free throw shooter." This is quite impressive. Someone hands you a basketball and says, "Prove it."

You shoot 100 free throws, but it does not go as well as you hoped. You make only 75. Someone says, "You are not a 90% free throw shooter." You insist, however, that you really are. "It was just bad luck. Honestly," you say, "I really am a 90% free throw shooter."

The question is: Should we believe you? Anyone who has ever shot free throws knows there is luck involved. We would not expect you to make 9 out of every 10 shots, like clockwork. So, it could be that by chance, you missed a few more than expected. Another way to ask the question is: Can randomness explain this poor outcome? Or, in yet other words, how uncommon is missing this many free throws for a 90% shooter?

We are not having this conversation if you had made 89 or even 88 out of a 100. Then it would be easy to believe you are actually a 90% shooter and it was just bad luck. But how do we handle the fact that you missed 15 more than expected? That seems like a lot, but how rare is that?

There is a way to answer this question analytically, that is, with mathematics. We will not go that route. Instead, we will use the method of simulation.

Monte Carlo simulation simply means the repeated running of a chance process and then direct examination of the results. It can be used in frontier research work, but we will use it just like we used numerical methods to solve optimization problems - simulation enables us to understand complicated concepts without advanced mathematics.

Monte Carlo simulation is based on brute force - repeat the chance process and examine the results. It requires no imagination or mathematics at all. It will be our go-to method for understanding randomness and answering questions like "Do we believe you are a 90% free throw shooter if you make only 75 out of a 100 ?".

Gauss and Two Approaches

Carl Friedrich Gauss (1777-1855) was perhaps the greatest mathematician of all time. Before the euro, Germany's ten Deutsche Mark note featured him along with a graph of the normal curve (which he made famous and is called the Gaussian distribution). Look carefully in Figure 3.1 and you can see that it even displays the equation of the normal distribution.

Figure 3.1: German currency featuring Gauss.

There is a story, probably apocryphal, of how he amazed his kindergarten teacher. Apparently, the children were especially unruly one day, so the teacher assigned a dreary problem as punishment. He told them to add all the numbers from 1 to 1,000 . This starts easily, but gets tedious and painful pretty quickly. $1+2=3,3+3=6,4+6=10$, and $5+10=15$. It will take a long time to get to 1,000 .

Gauss waited a minute, then stood up and announced the answer, 500,500. The stunned teacher asked him where he got that number, which is correct, and Gauss said he noticed a pattern. Remember, he is five years old.

If you make a list of the numbers, then create a second list, but flipped, the pairs always add up to $1,001.1$ goes with $1,000,2$ with 999,3 with 998 , and so on until the end when 998 is with 3,999 with 2 , and 1 with 1,000 .

The rest is easy (well, maybe not for the usual five-year old, but this is Gauss). Multiply 1,001 by 1,000 (since there are 1,000 pairs) and divide by 2 to get 500,500 . As they say, QED.

This is clever, remarkable, and beautiful. It is like Michelangelo and the Sistine Chapel. Is Monte Carlo simulation like this? No.

Monte Carlo simulation is a different approach to problems which uses little creativity or subtlety. It is a direct attack on a question.

Monte Carlo simulation is like solving the teacher's tedious problem by using a spreadsheet to add the numbers.
$S T E P$ Make a list from 1 to 1000 in cells A1:A1000 (using fill down, of course) and then, in cell B1, enter the formula $=S U M(A 1: A 1000)$.

Excel displays 500,500 . This is nowhere as magnificent as what Gauss did, but it does give the answer.

Monte Carlo simulation was developed during World War II by physicists working on the Manhattan Project. Nicholas Metropolis coined the term because his colleague, Stanislaw Ulam, was an avid poker player. They were simulating how radiation propagates and incorporating randomness. The connection to chance and gambling is why Metropolis named the method after the famous Monte Carlo casino in Monaco.

So Monte Carlo simulation, or simulation for short, is an alternative to the analytical approach. Instead of using equations and algebraic manipulations, simulation uses computers to repeat the chance process many times and then directly observes the outcomes.

You can think of simulation as the much younger sibling of analytical methods. Let's apply it to free throw shooting to show how it works.

Are You Really a 90% Shooter?

Our solution strategy will be simulation, but make no mistake, Gauss would not have needed simulation. He would have immediately rejected your claim. He knows a formula that can be used, $\sqrt{n} \sigma$, which answers the question quickly. The formula is the product of sophisticated mathematics and can be called beautiful, but most people find it extremely difficult to understand and cannot use it to answer the question.

All Monte Carlo simulations use a random number generator(RNG). Excel's RNG function is RAND () . This draws uniformly distributed random numbers in the interval from zero to one.
$S T E P$ Insert a sheet in your Excel workbook and, in cell A1, enter the formula $=$ RAND () .

You see a number with several decimal places displayed that is between zero and one. The number is actually much longer.
$S T E P$ widen the column and add decimal places to see this. Keep adding decimal places (widening column A as needed) until you start seeing zeroes.

As you learned when we explained Solver's false precision, most modern spreadsheets use 64-bit double-precision floating point format. If you count carefully, you will see that $\operatorname{RAND}()$ has a zero, then a decimal point, and then 15 decimal places with values from zero to nine. After that, they are all zero so we have reached the maximum precision. It is important to understand that our spreadsheet's random number is finite, but also that it has many more decimal digits than what was originally displayed.
$S T E P$ Repeatedly press F9 (you may have to hold down the $f n$ key on your keyboard). F9 is the keyboard shortcut to recalculate the sheet.

The number in cell A1 changes each time you recalculate the sheet. This is the beating heart of the simulation.

The bouncing numbers show that, although $\operatorname{RAND}()$ is finite, it has a massive set of numbers to choose from. If it had only one decimal place, RAND() would have 10 possible numbers (from $0.0,0.1,0.2$, and so on until 0.9). Six decimal places would give it 1 million different numbers. Twelve gives a tril-
lion numbers. Fifteen is a quadrillion!
So, you can think of $\operatorname{RAND}()$ as a plucking a number from a humongous box with a quadrillion numbers in it.

Full disclosure: This is not exactly right because $\operatorname{RAND}()$ is using an algorithm to produce the next number. This is why computer-generated random numbers are called pseudorandom, where the prefix pseudo means false.

To model a 90% free throw shooter, we use an IF statement.
$S T E P$ In cell B1, enter the formula $=\operatorname{IF}(\operatorname{A1}<0.9,1,0)$.
The IF function has three arguments (or inputs), separated by commas. The first argument is the test, the second is what happens if the test is true (or yes), and the third is what happens if it is false (or no). If the random number in cell A1 is less than 90%, then cell B1 shows a one, which means the free throw was made; otherwise, it shows a zero, which means it was missed.

Some students (usually really smart, careful ones) obsess about whether A3 should be less than $(<)$ or less than or equal to $(\leq) 90 \%$. This does not matter because RAND() has so many random numbers available to it. The chances of drawing exactly 0.900000000000000 are ridiculously small.

When the IF function evaluates to 1 , the free throw is made and when it is 0 , it is missed. This is a binomial random variable since it can only take on two values, 0 or 1 .

We do not need to actually see the random number generated so we can embed RAND() directly in the IF statement.
$S T E P$ In cell B2, enter the formula $=\operatorname{IF}(\operatorname{RAND}()<0.9,1,0)$. Fill down this formula to cell B100. Press F9 a few times to see the 0 and 1 values bouncing around.

We have implemented the data generation process (DGP) in Excel. The DGP tells us how our data are produced.
$S T E P$ Rename the sheet (double-click on the sheet tab) DGP and save the workbook as FreeThrowSim.

As you scroll back up to the top row, you will see many ones and a few zeroes. With a 90% success rate, roughly one in ten cells will have random number greater than 0.9 and, therefore, show a 0 .

The fact that each cell in column B stands alone and does not depend on or influence other cells means we are assuming independence. In our model, a miss or make does not affect the chances of hitting the next shot.

If you believe in the hot hand (Cohen, 2020), this implementation of the chance process is wrong. If making the previous shot increases the chances of making the current shot, there is autocorrelation and we cannot use 0.9 as the threshold value for every shot. We assume independence from one shot to the next.

How many shots out of 100 will a 90% shooter make?
$S T E P$ Enter the formula $=\operatorname{SUM}(B 1: B 100)$ in cell C 1 and the label, "Number made" in cell D1.

You will see a number around 90 in cell C1. Each press of F9 gives you the result of a new outcome from 100 attempted free throws.

The number of made free throws from the virtual shooter you have constructed in Excel is not always exactly 90 because you incorporated RAND() in each shot.
$S T E P$ Use your keyboard shortcut, F9, to recalculate the sheet a few times to get sense of the variability in the number of made shots from 100 free throws.

There is no doubt that the number of made shots is a random variable since it is bouncing around when you recalculate the sheet. It makes common sense that adding 100 bouncing numbers will produce a random outcome.

A statistic is a recipe for the data. Cell C 1 is a sample statistic because the recipe is to add up the results from a sample of 100 shots. We are interested in the distribution of the sum of 100 free throws from a 90% free throw shooter, including its central tendency, dispersion, and shape of a histogram of outcomes. With this, we can decide if 75 made shots is merely unlikely or so rare that we reject the claim that you are a 90% shooter.

Simulation is simply repeating the experiment many times so we can approximate the center, dispersion, and distribution of the outcomes. Since we are working with a sample statistic, the distribution of the sum of 100 free throws is called a sampling distribution.

To process the many outcomes, we need software. A free Excel add-in that does Monte Carlo simulation is available here: tiny.cc/addin.
$S T E P$ Download the MCSim.xla file from the link above and use the Add-Ins Manager (File \rightarrow Options \rightarrow Add-ins \rightarrow Go) to install it. Click the Add-ins tab and click MCSim.

EXCEL TIP The keyboard shortcut to call the Add-ins Manager is alt, t , i (press these keys in order without holding any of them down).

Figure 3.2 shows the MCSim add-in dialog box. On the left are three required choices. You must select a cell to track (C 1 in our example), the number of repetitions (the default is 1,000), and the random number generator to use. The MCSim add-in comes with its own RNG, RANDOM. Selecting it will replace all RAND in the sheet with RANDOM. The default is no changes.

Figure 3.2: The Monte Carlo Simulation Excel Add-in.

On the right are some advanced options. Some of these will be used in future work. The Set Seed option forces the RNG to begin from the same initial position, which allows for replication of results.
$S T E P$ click in the Select a cell box, clear it, and click cell A1 (displaying $\operatorname{RAND}())$. Click in the Set Seed box and enter 123. Click Proceed.

A new sheet is inserted in the workbook. It shows the first 100 outcomes in column B, summary statistics, and a histogram. It is roughly, but not exactly a rectangle. If you ran more repetitions, it would be less jagged.
$S T E P$ Return to the $D G P$ sheet and repeat the simulation of cell A1.
The results are exactly the same as before because the Set Seed option started the RNG from the same initial value.
$S T E P$ Return to the $D G P$ sheet and click the MCSim button in the Add-ins tab. Select cell C1 (the sum of made free throws) and clear the Set Seed box. Click Proceed.

Figure 3.3 shows the results. Yours will be different because we cleared the Set Seed box. However, your results will be quite close in the sense that your average is near 90 and the SD is around 3 .

Figure 3.3: Simulation Results for Sum of 100 Attempts from a 90% Shooter.
The average and SD are approximations to their true exact analogues, the expected value (EV) is exactly 90 and the standard error (SE) is exactly 3. The EV is the center of the sampling distribution, while the SE is the typical deviation, or bounce, in the statistic.

We would say that we expect a 90% free throw shooter to make 90 out of 100 attempts, plus or minus 3 free throws. The plus or minus is critical because it tells us the variability in the number of made free throws.

The sim also shows the maximum and minimum shots made from 100 free throws in 1,000 repetitions. In Figure 3.3, the max is 98 and min is 78.

This gives an answer to our question. In 1,000 repetitions, the worst a 90% shooter did was 78. It certainly looks like you are not a 90% free throw shooter.

What if we did more repetitions?
$S T E P$ Run a simulation of 10,000 sets of 100 free throws.
Once again, you are unlikely to see 75 or fewer. It seems the bad luck defense is not going to work. While it is possible that you really are a 90% free throw shooter and had an incredibly unlikely run of bad luck, such an outcome is incredibly rare. So rare, in fact, that we do not believe your claim to be a 90% free throw shooter.

The average and SD values changed a little with the second simulation. This shows that simulation always gives an approximate answer with some variability. Simulation can never give us an exact answer because we cannot run an infinity of repetitions. As the number of repetitions increases, the approximation gets better, but it is never exact.

By the way, as mentioned earlier, Gauss and statisticians using his work would have answered this question differently. A simple formula would lead immediately to rejection of your claim.

The procedure begins by computing the SE with the formula $\sqrt{n} \sigma=\sqrt{100} \times$ $0.3=3$. Next, express the observed from the expected difference in standard units: $\frac{75-90}{3}=-5$. This is so far in the tail of the normal (Gaussian) curve that the claim is rejected.

In other words, 75 out of 100 when 90 was claimed is 5 standard units away from what we expected to see and this is ridiculously unlikely so, sorry, we do not believe that you are a 90% free throw shooter who had some bad luck.

In fact, neither analytical methods nor simulation can ever give a definitive, guaranteed answer. Both agree that, given the evidence, 75 out of 100 means we do not believe the claim that you are a 90% shooter. Since chance is involved, it is possible that you are a 90% shooter and missed every shot. We are not interested in what is possible. We want to know how to use the evidence to decide whether or not we believe a claim.

If you have taken a statistics course, you might recognize that we are doing hypothesis testing without explicitly saying so. The null is that you are a 90% shooter and the alternative hypothesis is that you are not. 75 out of 100 produces a test statistic far from the expected 90 so the p-value is really small. Thus, we reject the null.

Max Streak

A second example of simulation involves streaks, also known as runs. A streak in this case is a consecutive set of made shots.
$S T E P$ Return to the $D G P$ sheet. Starting from cell B1, find the first 1 (it could be cell B1), and then count how many 1 s in a row you see before you encounter a miss. Write that number down and count the next streak. Continue until you reach the $100^{\text {th }}$ shot attempt. The longest streak is the max streak.

The question is: what is the length of the typical max streak in a set of 100 free throws from a 90% free throw shooter?

This is an exceedingly difficult question. It is not asking to count the streaks (also a hard question), but to find the biggest streak in 100 shots. You do not simply add up the number made, you have to find the length of all of the streaks and then identify the longest one.

Unlike how many free throws in 100 attempts a 90% shooter will make, you have no easy way to guess the typical max streak. It could be 20,40 , or maybe 50. Who knows? How can we answer this question?

The analytical approach is a bit of a dead end. There are formulas that approximate a solution (Feller, 1968, p. 325), but the math is somewhat complicated. No exact analytical solution has been found.

Simulation can be used if we can figure out a way to ask the question in Excel so that a cell displays the answer. This means simulation requires some ingenuity. We need a cell that computes the max streak so we can use the MCSim add-in. We do this in two steps: first we figure out how to report the current streak, then we use the MAX function to find the longest streak.
$S T E P$ In cell E1, enter the formula $=B 1$. In cell E 2 , enter the formula $=I F(B 2=1, E 1+1,0)$. Fill it down a few cells.

Now you can see what the formula is doing. If the shot is made, we add it to the previous running sum, but if it is missed, it resets the running sum to 0 . The $\mathrm{B} 2=1$ part of the formula tests if the current shot is made and $\mathrm{E} 1+1$ increases the current streak length by one. The zero means you missed and the streak is now zero.
$S T E P$ Fill the formula down to E100 and look at the values as you scroll back up.

You should see several streaks in a set of 100 free throws. We want the longest streak. That is the second step in our implementation of the question in Excel and it is easy.
$S T E P$ In cell F1, enter the formula $=\operatorname{MAX}(E 1: E 100)$ and enter the label "max streak" in cell G1. Press F9 a few times.

Cell F1 is displaying the max streak from each set of 100 free throws. Max streak is a statistic, just like the sum, because it is a recipe - albeit much more complicated than the sum.

It has an expected value, standard error, and sampling distribution. We can approximate all of these with simulation.
$S T E P$ Run a simulation, with 10,000 repetitions, of cell F1.

Figure 3.4 shows results. Yours will be a little different. The average is an approximate answer to our question: the max streak is about 27 or so. The exact answer is the expected value, but we have no way of computing it.

Summary Statistics		
Average	26.858	
SD	9.5715	
Max	85.000	
Min	9.000	

Histogram of \$F\$1

Figure 3.4: Sim Results for Max Streak in 100 Attempts from a 90\% Shooter.

The histogram is an approximation to the exact sampling distribution (which no one has figured out how to exactly derive). The graph tells us which values are unlikely: roughly 10 or fewer and 50 or more.

Notice that the sampling distribution of the max streak statistic, unlike the sum, does not appear to follow the normal curve. The max streak has a long right tail and is not symmetric.

Takeaways

Sometimes, a function or problem is deterministic, but other times we are faced with stochastic data-the numbers depend on chance, luck, and randomness. The values we observe are produced by a data generation process, DGP, and they are volatile.

Monte Carlo simulation is a brute force approach to answering questions involving stochastic data. A much older alternative, the analytical approach, relies on brainpower to derive formulas.

To run a simulation, the problem must be implemented in Excel (or some software that can generate random numbers). Of course, one can manually flip a coin many times in the real world, but this is tedious. Simulation did not become a powerful tool until modern computers were invented and enabled a great many repetitions in a short period of time.

Simulation is always only an approximation. By running more repetitions, the approximation improves, but it can never give an exact answer because it would have to run forever.

Often, we are searching for the sampling distribution of a statistic. This tells us the chances of each outcome, the typical result (called the expected value), and the dispersion in values (called the standard error).

The MCSim add-in always produces summary statistics and a histogram. If the cell that is tracked is a statistic, then the average is the approximate expected value and the SD is the approximate SE .

In case you think streaks are a waste of time, look at this headline to an article in The Wall Street Journal on July 27, 2023, on page B1:

Dow Sets Longest Winning Streak Since ' 87

The Dow's streak of 13 consecutive sessions with gains ended the next day. The longest streak ever (as of this writing) is 14, back in 1897.

References

The epigraph is a famous quote from 1951, when computer science was taking off: "Various Techniques Used in Connection With Random Digits". There are many algorithms for random number generation, some are better and others worse. Excel's RAND () is not great.

Cohen, B. (2020) The Hot Hand: The Mystery and Science of Streaks, Custom House. Russ Roberts interviews Cohen in an August 10, 2020 episode of EconTalk available at www.econtalk.org/ben-cohen-on-the-hot-hand.

Feller, W. (1968, $3^{\text {rd }}$ ed.) An Introduction to Probability Theory and Its Applications, John Wiley \& Sons. archive.org/details/introductiontopr0001fell

3.2 Parrondo's Paradox

A paradox is something (such as a situation) with opposing elements which seems impossible, but is actually true.

An optical illusion is related to a paradox in that you see something that is not easily explained or can seem impossible. Figure 3.5 is an example. Do you see the old woman or the young lady, or both? Your age affects what you see in this drawing - older people are more likely to see the old lady (Nicholls et al., 2018).

Figure 3.5: Old woman or young lady?

Juan Parrondo is a physicist who discovered the paradox named after him in 1996. Parrondo's Paradox occurs when two losing games are combined and they produce a winning game. That is puzzling and counterintuitive.

Almost always, game outcomes are additive, so a losing game plus a losing game equals a losing game just like adding two negative numbers gives an even more negative number. Parrondo found what can be described as a black hole in the parameter space where adding two losers yields a winner.

The paradoxical nature of the result will become apparent when we implement the games in Excel and directly examine the outcomes. Our goal is to show how simulation makes Parrondo's Paradox crystal clear.

Losing Game A

Game A is coin flip with a slightly negatively biased coin. Heads earns you +1 monetary units (M) and tails -1 . The coin is flipped 100 times and we keep a running sum after each flip. On average, at the end of the game, the result is negative so we say Game A is a losing game.
$S T E P$ In cell A1, enter the label "Game A." In cell A3 enter the label "epsilon" and in cell B3 enter the number 0.005. In cell A4 enter the label " $\mathrm{p}(\mathrm{H})$," this is the probability of flipping a head. In cell B4, enter the formula: $=0.5-B 3$.

With a probability of heads less than 50%, we will flip heads less often than tails. This is why this game is a loser.
$S T E P$ In cell A6 enter the label "Flip \#" and create a series from 1 to 100 in cells A7:A106. In cell B6 enter the label "Result" and in cell B7, enter the formula: $=\operatorname{IF}(\operatorname{RAND}()<\$ B \$ 4,1,0)$. Fill it down to cell B106.

Column B has our simulated coin flips. We know $\operatorname{RAND}()$ is uniformly distributed on the interval $[0,1]$. It will produce tails slightly more frequently than heads because cell $\mathrm{B} 4<0.5$.

We track the money in column C with an IF statement.
$S T E P$ In cell C6 enter the label "End M" and in cell C7 enter the formula: $=I F\left(B^{7}=1,1,-1\right)$.

The formula for the next cell is different because we have to track how much money we had at the end of the previous flip. Thus, we add the cell above.
$S T E P$ In cell C8, enter the formula $=\operatorname{IF}(B 8=1,1,-1)+C 7$. Fill it down to cell C106. Select C6:C106 and make a Scatter chart. Press F9 a few times.

The chart shows the entire game and cell C106 tells us the outcome of Game A. If it is positive, the game was won; if negative, it was lost. The number tells us how much we won or lost.

We can use the MCSim Excel add-in to examine the sampling distribution of C106. If needed, download and install MCSim from tiny.cc/mcsim.
$S T E P$ select cell range C7:C106 and click MCSim (in the Add-ins tab). Check the Record All Selected Cells option and click Proceed. The simulation is fast, but Excel may take some time to display the results.

Excel inserts two sheets in the workbook. The MCSim sheet has the result for C7 (the first coin flip), but the MCRaw sheet has 1,000 rows and 100 columns of numbers (which is why Excel took so long to display the results).

We can process these numbers to understand Game A. Each row is a game with 100 flips running left to right. Each flip number (column) is called an ensemble and the average of each flip number is called the ensemble average.
$S T E P$ In cell A1003 of the MCRaw sheet, enter the formula: $=A V E R A G E(A 2: A 1001)$.

This value will agree exactly with the average in J5 of the MCSim sheet. This value is the average M after one flip. It is slightly negative.
$S T E P$ Select cell A1003 in the MCRaw sheet and fill it right to the $100^{\text {th }}$ column (CV). With these cells selected, make a chart by clicking Insert and choosing Scatter with lines and no markers. Title the chart "Flip \#" (since the title is right above the x axis it labels the axis).

Your chart is an approximation to the exact ensemble average in Figure 3.6. Simulation produces random deviation from the exact object. We could improve the approximation by increasing the number of repetitions. The squiggly graph in the simulation would converge to the line in Figure 3.6.

Figure 3.6: The exact evolution of Game A.

Your simulation and Figure 3.6 make clear that Game A is a loser. From the first flip, it gets steadily worse and by the last flip, you can expect to lose 1 monetary unit.

Of course, not every single game is a loser. Column CV in the MCRaw sheet shows many cells that are positive. On average, however, we can expect to lose playing Game A.

Losing Game B

Game B is also a loser, but it is more complicated than Game A. Game B is based on two coins and you use Coin 1 if your current monetary holding is divisible by 3 , otherwise you use Coin 2. The MOD function enables us to determine which coin to use.
$S T E P$ Return to the sheet with Game A and in cell E1, enter the formula: $=\operatorname{MOD}(13,12)$.

The cell displays 1 because it is doing modulo arithmetic. Converting military time to AM/PM time uses modulo operator: 1300 is 1 PM because you divide by 12 and the remainder is the answer.

Game B follows the flow chart in Figure 3.7. We will use the MOD function to divide any number by 3 and if the result is zero, we know it is evenly divisible and we flip Coin 1. If not, we flip Coin 2.

Figure 3.7: The rules of Game B.
$S T E P$ In cell G1 enter the label "Game B." In cells G3 and G4 enter the labels "Coin 1 " and " $\mathrm{p}(\mathrm{H})$." In cell H 4 , enter the formula: $=0.1-\mathrm{B3}$. In cells J3 and J4 enter the labels "Coin 2" and "p(H)." In cell K4, enter the formula: $=0.75-B 3$.

Obviously, we would rather flip Coin 2. It comes up heads almost 75% of the time so we win 1 monetary unit. Coin 1 is the opposite. It is strongly biased against heads so we lose often with Coin 1.
$S T E P$ copy cells A6:A107 and paste in cell G6. In cell H6 enter the label "Start M" and in cell H7 enter a 0. In cell I6 enter the label "MOD(M,3)" and in cell I7, enter the formula: $=\operatorname{MOD}\left(H^{7}, 3\right)$. In cell J6 enter the label "Coin" and in cell J7, enter the formula: $=I F(I 7=0,1,2)$.

You start with 0 monetary units so that is evenly divisible by 3 so we will use Coin 1, but we need a more general formula to determine what happens if it is Coin 1 or Coin 2. An IF statement can handle this.
$S T E P$ In cell K6 enter the label "Result" and in cell K7, enter the formula: $=I F(J 7=1, \operatorname{IF}($ RAND ()$<\$ H \$ 4,1,0), \operatorname{IF}(R A N D()<\$ K \$ 4,1,0))$.

Next, we report our money position.
$S T E P$ In cell L6 enter the label "End M" and in cell L7, enter the formula: $=I F\left(K^{\gamma}=1,1,-1\right)$.

In the next row, we walk through the cells in order.
$S T E P$ In cell H8 enter the formula: = $L 7$ and fill it down. Select cell range I7:K7 and fill it down. In cell L8 enter the formula: $=I F(K 8=1, L 7+1, L 7-$ 1). Fill it down. Select L6:L106 and make an XYScatter chart.

This completes Game B. Cell L106 gives the final result of the game, but as we did before, we can track every flip of the game to better understand it.
$S T E P$ select cell range L7:L106 and click MCSim (in the Add-ins tab). Check (if needed) Record All Selected Cells and click Proceed.

As before, two sheets are inserted and we will process the data in the MCRaw sheet to show how Game B works.
$S T E P$ Return to the MCRaw3 sheet and copy row 1003. Go to the MCRaw5 sheet, select cell A1003 and paste. Make a chart of row 1003.

Your results are surprising. In the first few flips of the ensemble average, it jaggedly oscillates and then settles down to a downward sloping relationship.

The exact ensemble average is given by Figure 3.8. The simulation is correct in that there is an oscillation in the expected value in the first few flips before convergence to a single line that heads downward.

Figure 3.8: The exact evolution of Game B.

Your simulation results and Figure 3.8 show that Game B is a loser and a bigger loser than Game A. We can expect to lose about 1.4 monetary units playing Game B.

Mixing Two Losing Games

Having set up and run games A and B separately, we are now ready to mix these two losing games. This will demonstrate Parrondo's Paradox because, somehow, mixing the losing games results in a winning game. In fact, there is an optimal mixing strategy, but we will randomly mix the two games by flipping a fair coin.
$S T E P$ In cell N1 enter the label "Random Mixing." Copy cell range A6:A106, select cell N6, and paste. In cell O6 enter the label "Game" and in cell O7, enter the formula: $=\operatorname{IF}(R A N D()<0.5, " A ", " B$ "). Fill it down.

Column O tells us which game we will play at each coin flip. It is easy to see by pressing F9 repeatedly that the letters A and B are bouncing around indicating that we are mixing the games randomly.

We need to input Game B again (we cannot just use the Game B in columns $\mathrm{G}: \mathrm{L})$ because it depends on value of M to decide which coin to play.
$S T E P$ In cell P5 enter the label "If Game B is chosen." Copy cell range H6:K7, select cell P6, and paste.

We need an IF statement to display the actual outcome of this game based on whether we play Game A or Game B. We take Game A from column B since it does not depend on the amount of M we have, but we take Game B from column S .
$S T E P$ In cell T6 enter the label "Actual Result" and in cell T7 enter the formula: $=\operatorname{IF}\left(O^{7}=" A ", B 7, S^{7}\right)$.

Next, we determine our monetary position.
$S T E P$ In cell U6 enter the label "End M" and in cell U7, enter the formula: $=I F(T 7=1,1,-1)$.

We process the second flip and fill down to complete the implementation.
$S T E P$ In cell P8 enter the formula $=U \gamma$. Fill it down. Select cell range Q8:T8 and fill it down. In cell U8 enter the formula $=I F(T 8=1, U 7+1, U 7-1)$. Fill it down. Select cell range U6:U106 and make a Scatter chart.

This completes the random mixing of two losing games. Cell U106 gives the final result of the game. Pressing F9 does not reveal much. We need to run a simulation.
$S T E P$ select cell range U7:U106 and click MCSim (in the Add-ins tab). Confirm that the Record All Selected Cells option is still checked and click Proceed.

We have the data to demonstrate Parrondo's Paradox, but we need to create an ensemble average chart.
$S T E P$ Return to the MCRaw5 sheet and copy row 1003. Go to the MCRaw7 sheet, select cell A1003 and paste. Make a chart of row 1003.

The results are absolutely stunning. Unlike our two previous charts, this one points upward and the final value is positive! This is a winning game! Figure 3.9 shows the exact evolution of the randomly mixed games. The expected value of playing a random combination of games A and B keeps rising the more you play. That is mind-boggling.

Figure 3.9: The exact evolution of randomly mixing A and B.

By randomly mixing individually-losing Games A and B , we can expect to win about 1.3 monetary units playing 100 times. This is Parrondo's Paradox.

What is Going on Here?

Does this work show that you can walk into a casino and take turns playing blackjack and roulette and come out a winner? No.

Does it mean that you can combine two losing stocks and somehow make money? No.

Does it mean that I can take something poisonous and then drink another poison and the two will combine to heal me? No.

Parrondo's Paradox does not say that mixing any two losing games produces a winner. The two games and epsilon value were chosen carefully. Parrondo found a parameter value that generated the anomalous result. Think of a Cartesian plane with a coordinate that is like a black hole - all of the other coordinates behave as expected, but this particular point is really weird. Parrondo found such a point by carefully picking the bias (epsilon) in games A and B.

Applying this paradox to the real-world is a challenge. Explaining the inspiration for Parrondo's discovery of the paradox will help us understand how the paradox emerges.

Parrondo is a physicist and his discovery of an epsilon value that produced the paradox was influenced by something called the flashing Brownian ratchet. This is a process that alternates between two regimes in a sawtooth fashion.
$S T E P$ watch this 2-minute video to see the ratchet in action and how it applies to Parrondo's Paradox: vimeo.com/econexcel/parrondo. You can control the ratchet yourself here: tiny.cc/hbratchet.

It is true that Parrondo's Paradox requires a specific, and we might add rare, type of losing game to be mixed. The paradox would never emerge if the two losing games were like Game A. Mixing two Game As would produce a bigger negative outcome.

Game B, with its two coins, one of which is biased in our favor, holds the key to the paradox. Figure 3.8 tells us that, for the first few flips, the expected value of Game B alternates. Mixing takes advantage of the positive parts of Game B in those first few flips.

Takeaways

Optical illusions and paradoxes are mind-bending. They violate what we expect to happen and force us to deal with something unbelievable.
$S T E P$ watch a classic 2-minute video of an optical illusion with an explanation of how it works: tiny.cc/hbfaceillusion.

Like an optical illusion, Parrondo's Paradox produces a shocking result: loser plus loser equals winner. That should not happen.

At a magic show, we know there is a trick involved, so the person was not really cut in half or made to disappear. Parrondo's Paradox is explained by the ratchet, which catches the ball at just the right time and pushes it upwards, producing an overall upward movement.

Parrondo's Paradox requires specific values for epsilon, the bias in coins being flipped, and Game B is actually a combination of two coins which are used based on whether the player's total amount of money is evenly divisible by three.

We used simulation to explain Parrondo's Paradox, but it is not an integral part of the paradox. An analytical solution using Markov chains provide exact results. The analytical solution was used to create the exact evolution charts (Barreto, 2009).

Usually, we use simulation to represent a real-world process. We do not have to make it a perfect representation, but it must capture the essential elements.

We can go, however, in the other direction, from an artificial environment to the real world. Parrondo found something paradoxical and now we are asking, "Is there something like this in reality?" Could it ever make sense to combine stocks or medicines or anything else in a way that reverses the negative result? The search is on.

Finally, random mixing produces a winning game with an expected value of about 1.3 monetary units at the $100^{\text {th }}$ flip, but there is an optimal mix. Playing AB, then ABBABBABB repeatedly, produces an expected value of a little over 6 monetary units. Barreto (2009) explains the analytical solution and optimal mixing with Excel.

References

Barreto, H. (2009) "A Microsoft Excel Version of Parrondo's Paradox" SSRN Working Paper: academic.depauw.edu/h̃barreto/working/Parrondo/ParrondoSSRN2.pdf and academic.depauw.edu/hbarreto/working/Parrondo/Parrondo.xls.

Nicholls, E., Churches, O., and Loetscher, T. (2018) "Perception of an ambiguous figure is affected by own-age social biases" Scientific Reports volume 8, Article number: 12661. Open-access www.nature.com/articles/s41598-018-31129-7.

A Mathematica version:
demonstrations.wolfram.com/TheParrondoParadox/
A YouTube demonstration: www.youtube.com/watch? $\mathrm{v}=\mathrm{PpvboBJEozM}$

For an entertaining read on paradoxes, try Perplexing Paradoxes by George Szpiro (2024).

3.3 Pooled Testing

Those who lived through the covid pandemic are certain to remember it for a long time. Masks, mandates, social distancing, vaccines, virtual meetings, and for many of us, losing loved ones. We will also remember testing for covid with nasal swabs and at-home kits.

It never caught on during the covid pandemic, but pooled testing was considered because it could reduce the number of tests needed and save time (Mandavilli, 2020). Pooled testing was used successfully by the United States military during WWII to test men for syphilis (Dorfman, 1943).

The logic of pooled testing is straightforward. A university, for example, could take saliva or nasal swab samples from each student and test them individually or it could combine a part of each sample from several people into a single group and test the pooled sample. If it is negative, then all of the individuals in the combined pool are negative and we have saved on testing every person in that group. If the pooled sample is positive, then individual tests would be performed on the reserved parts of each individual's sample to determine exactly who is infected.

This leads to a crucial question: What is the optimal group size? The bigger the group, the lower the number of groups tested, but the higher the chances a group is positive and then everyone in the group has to be tested (we ignore the possibility of sub-group testing, false positives or negatives, and other complications).

We solve this optimization problem by constructing an Excel spreadsheet and using Monte Carlo simulation. We proceed step-by-step and reveal Excel functions and tools as we create our model of pooled testing.

The Data Generation Process

The first thing we need to do is implement the random process by which some people get infected and others do not. We do this by drawing a random number and comparing it to a threshold value so we get either a zero (not infected) or a one (infected).

We make the simplifying assumption that everyone has the same likelihood of catching the virus, say 5%. This is an exogenous variable (also called a parameter) in our model and it will serve as our threshold value for determining if someone is infected.
$S T E P$ Enter 5% in cell A1 of a blank spreadsheet and label it as "infection rate" in cell B1. Save the Excel file (PooledTesting.xlsx is a good name).

Cell A1 displays 5%, which is the same as 0.05 in decimal notation. The number 0.05 is what the spreadsheet stores in its internal memory. It is worth remembering that what is displayed may be different from what is stored.

> EXCEL TIP Name cells, especially if you have many or complicated formulas. We have been using cell addresses and we can, of course, refer to cell A1 in a formula, but cell addresses can be difficult to read. It is good practice to name a cell or a cell range so that formulas can use natural language to reference cells.
$S T E P$ Name cell A1 InfectionRate because this will make our future formulas easier to understand. If needed, search Excel's Help for "names in formulas."

Next, we incorporate randomness. As you know, Excel draws uniformly distributed random numbers in the interval from zero to one with the $\operatorname{RAND}()$ function.
$S T E P$ In cell A3, enter the formula $=R A N D$ ().
Just like the free-throw shooting and coin-flipping examples, we use Excel's random number generator to determine whether or not a person gets covid. We use an IF statement to group the RAND-generated values into two categories, zero and one.
$S T E P$ In cell A4, enter the formula $=\operatorname{IF}($ A3 $<$ InfectionRate, 1,0$)$.
You probably see a zero displayed in cell A4, if not, press F9 (you may have to use the $f n$ key). Zero means the person is not infected.
$S T E P$ Press F9 repeatedly to recalculate the sheet until you see a one in cell A4. The chances are only 1 in 20 so be patient.

As you recalculated, cell A3 constantly changed, but cell A4 changed only if A3 switched from being above or below the infection rate. Cell A4 is a binomial random variable because it can take only the values zero or one.

Now that we know how to implement a random process that outputs whether or not an individual is infected, we can create an entire population of people, some who get infected the virus and others with do not.
$S T E P$ In cell C1, enter the formula $=I F($ RAND ()$<$ InfectionRate, 1,0).
Notice how we directly embedded the RAND() function in the cell formula. We do not know which random number was drawn, but we do know if it was less than 5% because then cell C1 would display " 1 ".
$S T E P$ Fill down this formula all the way to cell C1000.
As you scroll back up to the top row, you will see a sprinkling of ones among many zeroes. With a 5% infection rate, roughly one in twenty cells will have random number draws less than 5% and, therefore, show the number one.

The fact that each cell in column C stands alone and does not depend on or influence other cells means we are assuming independence. In our model, one person with the virus does not affect the chances of anyone else being infected. This condition is surely violated in the real world. We should make the chances of infection depend on whether people with whom they come in contact have the virus to improve our analysis.

However, since our focus here is on showing how pooled testing works, we will not model infection dependent on people nearby. This would be a fun project where you would create clusters of cells and if one got sick, the nearby cells would have a much higher chance of infection.

How many people in our population of 1,000 are infected?
$S T E P$ Enter the formula $=\operatorname{SUM}(C 1: C 1000)$ in cell D1 and the label, "Number infected" in cell E1.

You will see a number around 50 in cell D1. The number of infected people is not always exactly 50 because there is chance involved in who gets infected.
$S T E P$ Recalculate by pressing F9 a few times to get sense of the variability in the number of infected people.

The total number of infected people can be less than 40 or more than 60 , but that is not common. Usually, there are around 45 to 55 infected. There is no doubt that the number of infected people is a random number since it is bouncing around when you recalculate the sheet. It makes common sense that adding binomial random variables will produce a random outcome.

We can make it easier to identify who is infected with a spreadsheet's conditional formatting capability. This offers the viewer visual cues that make data easier to understand.
$S T E P$ select the entire column C and apply a formatting rule that highlights, with color, cells with a value of one. Choose font and fill colors that you think emphasize being infected. If needed, search Excel's Help for "conditional formatting."

Now, when you scroll down, it is easy to see who is infected. Recalculation changes who is infected-it is as if we rewound and replayed the world with each press of F9.

Having implemented the chance process for being infected or not, we turn to pooled testing. Instead of testing each person, we can group individuals and test their combined sample. If the pooled sample tests positive, then we know at least one person is infected; if not, we know no one is infected and we do not have to test each individual in the group.

Instead of directly choosing the number of groups, it is more convenient to make the choice variable the size of the groups. Choosing group size determines how many groups we have since

$$
\text { Number of Groups }=\frac{\text { Population }}{\text { Group Size }}
$$

With our population of 1,000 people, a group size of 100 means we will have 10 groups. Intuitively, with an infection rate of $5 \%, 100$ people in a group means that at least one person will be infected and the group is probably going to test positive. We can make our intuition more convincing by computing the exact chances.
$S T E P$ Begin by entering 100 in cell D3 and the label "Group Size" next to it in cell E3. Enter the formula $=1000 / D 3$ in cell D4 and the label "Number of Groups" in cell E4.

An infection rate of 5% means each person has a 95% chance of not being infected. If there are two people (assuming the chances of infection are independent), then there is a $0.95 \times 0.95=0.95^{2}=0.9025$, or 90.25%, chance that neither are infected. This means there is a $100 \%-90.25 \%=9.75 \%$ chance that at least one of the two people is infected.

What are the chances that at least one person is infected in a group of 100 people? Remember, if even one person is infected in a group, we have to test everyone in the group to find out who is infected.
$S T E P$ In cell D6, enter the formula $=(1-\text { InfectionRate })^{\wedge} D 3$ and label "prob no one in the group infected" in cell E6. Format D6 as a percentage so that it displays 0.59%.

Next, we compute 100% minus the probability that no one in the group is infected to find the probability that at least one person is infected.
$S T E P$ In cell D7, enter the formula $=1-D 6$ and label "prob at least one in the group infected" in cell E7. Format D7 as a percentage (if needed).

With an infection rate of 5%, doing pooled testing with a group size of 100 is wasteful. After all, it seems overwhelmingly likely (over 99%) that we will have to test everyone in each of the ten groups so we would end up doing 1,010 tests.

Can we make our spreadsheet show how many people are infected in each group and confirm the computations we just made? We can, but the approach
described below uses a function which may be unfamiliar and advanced- the OFFSET reference function. Thus, we proceed slowly.
$S T E P$ In cell G1, enter the formula $=\operatorname{OFFSET}(E 1,3,0)$.

Cell G1 computes the number of groups because the OFFSET function went to cell E1 (the first argument in the function), then went three rows down (the second argument). The third argument is zero, so it stayed in column E. If the movement arguments are a positive integer we move down or right; negative integers move us up or left.
$S T E P$ Change the formula in cell G1 to $=\operatorname{SUM}(\operatorname{OFFSET}(\mathrm{D} 1,0,0,3,1))$.

Why does G1 display D1 plus 100? The two zeroes means it did not move from the reference cell D1, but the fourth and fifth arguments control the height and width, respectively, of the cell range. Therefore, the formula says to add up the values in cells D1, D2 (which is blank), and D3 (100).

We want to add up the values in column C into ten separate groups of 100 each. We can modify our OFFSET function to do the first group of 100 .
$S T E P$ Change the formula in cell G1 to $=\operatorname{SUM}(\operatorname{OFFSET}(\operatorname{C1}, 0,0,100,1))$. To be clear, change the D1 to C1 and the 3 to 100 .

The value reported in cell G1 is the sum of the first 100 people in the population. How can we get the second group of 100 people?
$S T E P$ Change the formula in cell G 1 to $=\operatorname{SUM}(\operatorname{OFFSET}(\$ C \$ 1,0,0,100,1))$ and fill it down to cell G2.

Adding the dollar signs made C1 an absolute reference so we kept our C1 starting point in cell G2, but we need to change the formula so it adds up the number of infected people in the second set of 100 . We do that by changing the second argument because it controls how many rows to move from the reference cell.
$S T E P$ Change the formula in cell G 2 to $=\operatorname{SUM}(\operatorname{OFFSET}(\$ C \$ 1,100,0,100,1))$.

EXCEL TIP Cell G2 reports how many people are infected in the second group of 100 . We could fill down eight more cells and then change the second argument manually to 200,300 , and so on, but this is poor spreadsheet practice. Never manually repeat the same entry or an ordered sequence (e.g., numbers or dates). In addition, you want to maximize flexibility. Hard-coding numbers, like 100, in formulas is poor practice because you might want to change that number in the future.

In this case, we want our groupings to respond to changes in cell D3. If, for example, we have a group size of 50 , we would then have 20 groups. We want the spreadsheet to automatically show how many people are infected in each of the 20 groups.

This task requires that we modify the second and fourth arguments. The fourth argument is the group size, which is simply cell D3. The second argument is more complicated. It is zero for the first group, then increases by D3 for each group. One way to do this is to use the ROW function, which returns the row number of a cell.
$S T E P$ Replace the formula in cell G 2 with $=R O W(D 6)$.
Cell G2 displays 6, the row number of cell D6. What happens if the ROW function does not have an argument?
$S T E P$ change the formula in cell G2 to $=R O W()$ and fill it down to G10.

Without an argument, the ROW function returns the row number of the cell which contains ROW() in the formula. We can use this to create a series that starts at zero and increases by the amount in cell D3.
$S T E P$ Change the formula in cell G 2 to $=(R O W()-1) * \$ D 3$ and fill it down to G10.

We can use our ROW function strategy in the OFFSET function's second argument to create a formula that gives us the number of infected people for any group size from 2 to 500 entered in D3. A "group" of one is simply individual testing and with 1,000 people, a group of size two yields 500 groups. Choosing a group size of 500 gives us 2 groups.

We start with G1 (notice that ROW()-1 is zero for G1 so the second argument evaluates to zero) and fill down to G500 (since 500 is the maximum number of groups we can have).
$S T E P$ Change the formula in cell G1 to
$=S U M(\operatorname{OFFSET}(\$ C \$ 1,(R O W()-1) * \$ D 3,0, \$ D \$ 3,1))$ and fill it down to G500.
Cells G1 to G10 now display the number of infected people in each of the ten groups of 100 people.
$S T E P$ click the letter C in column C to select the entire column, and then click the Format Painter button (in the Home tab in the ribbon, or top menu). Now click the letter G in column G.

You applied the formatting in column C, including your conditional formatting to highlight the infected people, to column G. It (probably) shows all of the groups highlighted, but it will soon come in handy when we lower the group size so some groups have no infected people.

EXCEL TIP It is good practice to include checks in your spreadsheets. In this case, an easy check is to see if the sum of infected people in the ten groups equals the total number of infected people in the population in column C.
$S T E P$ In cell H1, enter the formula $=\operatorname{SUM}(G 1: G 500)$ and the label "check" in cell I1, then recalculate the sheet a few times.

It is easy to see that cells D1 and H1 are the same. If not, something is wrong and you will have to go back to each step to find and fix the mistake.
$S T E P$ Change cell D3 to 200 and recalculate the sheet a few times.
Now only five cells in column G have nonzero values, representing the number of infected people in each of the five groups.

Group sizes of 100 and 200 are way too big to be the optimal size because we are extremely unlikely to get a group where everyone tests negative so we almost always have to test everyone in the group. We need to try much smaller group sizes.
$S T E P$ Change cell D3 to 20 and recalculate the sheet a few times.
Now we are really getting somewhere. Column G is showing the number of infected people in each of 50 groups. You can see values of $0,1,2,3$, and, less frequently, higher numbers. We love to see zeroes because they mean we do not have to test anyone in that group and we saved 20 tests.

How many tests will we have to run in total? The COUNTIF function allows us to count the number of cells in a range that meet a specific condition.
$S T E P$ In cell H2, enter the formula $=\operatorname{COUNTIF}(G 1: G 500, ">0 ")$ and the label "number of groups to test" in I2.

The COUNTIF function reports the number of cells in the range G1:G500 that have a value greater than zero. If we multiply this by the group size, we know how many individual tests we have to run. This is added to the number of group tests to give us our total number of tests.
$S T E P$ In cell H3, enter the formula $=H 2^{*} D 3$ and the label "tests from infected groups" in I3. In cell H4, enter the formula $=D_{4}+H 3$ and the label "total tests" in I4.

Notice that, once again, we did not hard-code numbers (like 20 for group size) into the formula. We want our spreadsheet to respond to changes in group size (cell D3) automatically.

Cell H4 is certainly giving us good news. Total tests is a random variable that is almost certainly less than 1,000 . You are likely to see numbers around 690 tests, give or take 70 or so. This is about a 30% decrease in the number of tests from the 1,000 required by individual testing.

Finding the Optimal Group Size

We have implemented in our spreadsheet a stochastic (or chance) process of getting infected and demonstrated the power of pooled testing. Grouping allows us to save on testing because any groups that have no infected people means we do not have to test those individual samples.

Our spreadsheet shows that a group size of 20 is better than individual test-
ing, but we do not want to do merely better than 1,000 tests. We want to perform the fewest number of tests. Our fundamental question is: What is the optimal group size?

There is a complication that we have to confront to answer our question: total tests is a random variable. We cannot just look at a single outcome because we know there is chance involved. Suppose two dice are on a table each showing 1 and I asked you to guess the sum of the next roll. You would not guess 2 because you know that is really unlikely.

We deal with the fact that total tests is a random variable by focusing on the expected value of total tests. This is what we would typically observe. The best guess for the sum of two dice rolls is 7 , the expected value. We need to find the expected value of total tests for a given group size so we can figure out which group size minimizes it.

There are mathematical rules for computing the expected value, but we will use Monte Carlo simulation. This approach is based on the idea that we can simply run the chance process (throwing two dice or hitting F9) many times and directly examine the results. We can compute the average of many repetitions (like rolling dice many times) to give us an approximation to the expected value.

So, we seek the group size that minimizes the expected value of total tests, which we will approximate by simulation. We will run many repetitions (recalculating the sheet repeatedly) and keep track of the total number of tests to see how many total tests we can expect to run as we vary group size.

While there are many simulation add-ins available for Excel, we can easily run a simulation using Excel's Data Table tool. It was not designed to run a simulation, but to display multiple outcomes as inputs vary. To do this, it recalculates the sheet, which enables us to perform Monte Carlo analysis.
$S T E P$ In cell L1, enter the number 1 and enter 2 in cell L2. Select both cells and fill down to row 400 so that you have a series from 1 to 400 in column L.

Next, we provide the cell that we wish to track, total tests.
$S T E P$ In cell M1, enter the formula $=H_{4}$.

We are now ready to create the Data Table.
$S T E P$ select the cell range L1:M400, click the Data tab in the ribbon, click What-If Analysis in the Forecast group, and select Data Table... A keyboard shortcut is alt-a-w-t.

Excel pops up the Data Table input box.
$S T E P$ click in the column input cell field, click on cell K1, and click $O K$.
Clicking on an empty cell would be meaningless if we were using the Data Table tool for its intended purpose, which is to show how an input cell affects a formula in another cell. All we want, however, is for Excel to recalculate the sheet and show us the total tests for that newly recalculated population in column C.

The display in column M shows 400 repetitions of hitting F9 and keeping track of total tests. This is exactly what we want because now we can take the average of the total tests values to approximate the expected number of total tests when the group size is 20 .

But before we do this, let's be clear about what a Data Table is actually doing. Be aware in the next step, however, that if you double-click on a cell in column M or click in the formula bar, you might get trapped in a cell. If you get stuck, press the esc (escape) key to get out.
$S T E P$ click on a few cells from M2 to M400 to see that they have an array formula: $\{=\operatorname{TABLE}(, K 1)\}$.

Excel has a friendly front-end via Data: What-If Analysis: Data Table... to create an array formula (indicated by the curly brackets, $\}$) that can display multiple outputs. You cannot change or delete an individual cell in the range M2:M400. They are, in a sense, a single unit, sharing the same formula.

You might also notice that the sheet is much slower as we enter formulas or press F9. This is due to the Data Table. Excel now has many more cells to recalculate and evaluate. We could do many more repetitions (usually simulations have tens of thousands of repetitions), but the delay in recalculation is not worth it. With 400 repetitions, the approximation is good enough for our purposes.
$S T E P$ In cell N1, enter the formula $=\operatorname{AVERAGE}($ M1:M400 $)$ and the label "approximate expected value of total tests" in cell O1.

Cell N1 is our simulation's approximation to what we want to minimize. It gives us a handle on the center of the sampling distribution of the statistic, totals tests. A statistic is a recipe for what to do with observations (in this case, given by the formula in cell H 4). If we make a histogram of the data in column M, we get an approximation to the sampling distribution of total tests.

Excel 2016 or greater is needed to make the histogram chart. This is not the Histogram option in the Data Analysis add-in (from the Analysis Tool-Pak). The histogram chart allows for dynamic updating and is a marked improvement over the histogram in the Data Analysis add-in.
$S T E P$ select cell range M1:M400, click the Insert tab in the ribbon, and select Histogram from the Charts group. It is in the Statistic chart group and, of course, in the collection of all charts (available by clicking the bottom-right corner square in the Charts group).

The default bin widths are a little too big, but they are easy to adjust.
$S T E P$ Double-click the chart's x axis and in the Axis Options, set the Bin Width to 20. Make the title "Approximate Sampling Distribution of Total Tests."

The chart is an approximation because it is based on only 400 repetitions. The exact sampling distribution of total tests would require an infinite number of repetitions. We can never get the exact sampling distribution or the exact expected value via simulation, but the more repetitions we do, the better the approximation.

Even with just 400 realizations of total tests, the graph looks a lot like the classic, bell-shaped distribution of the normal (or Gaussian) curve. The center is the expected value of the total tests we will have with a group size of 20 and the dispersion in total tests is measured by its standard error.
$S T E P$ In cell N2, enter the formula $=\operatorname{STDEV} \cdot P($ M1:M400 $)$ and the label "approximate standard error of total tests" in cell O2.

The standard error of total tests tells us the variability in total tests. It is a measure of the size of the typical bounce in total tests.

$S T E P$ Press F9 a few times and watch cell H4.

Cell H4 is bouncing. It is centered around 690 and jumps by roughly plus or minus 70 total tests as you hit F9. You can also scroll up and down column M to see that the total tests numbers are around 690 ± 70.

Simulation can not give us the exact standard error, but the standard deviation of our 400 realizations of total tests is a good approximation of the standard error.

There are many ways to be confused here. One of them is to fixate on the computation of the standard deviation. We used STDEV.P (for population) instead of STDEV.S (for sample) because we are not using the standard deviation to estimate the population standard deviation so we do not need to make a correction for degrees of freedom. Although the population standard deviation is correct, this makes almost no difference with 400 numbers.
$S T E P$ In cell N3, enter the formula $=\operatorname{STDEV} \cdot S(M 1: M 400)$ and compare the result to cell N2.

The emphasis on population versus sample standard deviation in many Statistics courses is only relevant for small sample sizes, say less than 30 observations. As the number of observations rises, the two grow ever closer.

To summarize, cells N1 and N2 tell us that we can expect to perform about 690 total tests, give or take roughly 70 tests. These are the numbers reported at the end of the previous section. This is for a group size of 20 . Can we do better? We get to choose the group size so we should explore how the expected number of total tests responds as we vary group size.
$S T E P$ Change the group size (in cell D3) to 10 and press F9 a few times. Which specific cell should you focus on and what do you conclude?

The cell we care about the most is cell N1 because it tells us (approximately) the expected number of tests we will have to run. Cell N1 is reporting good news. We can expect to perform about 500 ± 50 total tests. That beats the group size of 20 by almost 200 tests, on average, and is a large saving of a half versus 1,000 individuals tests.

Why does a group size of 10 do better than 20? There is evidence in various cells of the spreadsheet of what is happening. Lowering the group size from 20 to 10 increased the number of group tests from 50 to 100 (see cell D4), but the number of infected groups only went up a little bit (from roughly 32 to 40) and the groups are now much smaller. This is where the big savings are - instead of $32 \times 20=640$ tests, we only have to run, on average, $40 \times 10=400$ tests with a group size of 10 .
$S T E P$ confirm the claims above by switching back and forth from 10 to 20 in cell H4. Press F9 and read the various cells and the chart.

Spreadsheets are powerful because they can display a lot of information and dynamically update when you make changes. Your job is to make comparisons and process the information.

Can we do even better than a group size of 10 ?
$S T E P$ Change the group size (in cell D3) to 5 .
Amazing! Cell N1 fell again. The expected number of total tests is now about 425 (426.22 is a more exact answer, found by analytical methods) give or take roughly 30 tests. That is a gain of almost 60% versus individual testing. Pooled testing saves a lot of tests compared to individual testing.

As before, the number of groups we have to test has risen (this time to 200), but many groups are found to be uninfected. Cell D6 reports a 77.4% chance that no one in a five-person group will be infected. Thus, even though we test more groups, we more than make up for this because many groups test negative, saving us the need to test five people in the group.

The group size of 5 is, in fact, the optimal solution and answer to our question. Figure 3.10 reveals that we traveled down the expected number of total tests curve as we changed group size from 20 to 10 and finally 5 .

Figure 3.10 makes it easy to see that a group size of five is the minimum of the expected number of total tests curve, but it also reveals the tradeoff involved. The two curves are added up to produce the top, total curve. At 10, we test 100 groups (the bottom curve) and we add that to 400 (the expected number of tests from positive groups) and this gives 500 (the top curve).

Figure 3.10: The expected number of tests as a function of group size.

When we moved from 10 to 5 , we added 100 tests (the bottom curve), but saved about 175 tests (the middle curve), lowering our expected total tests from 500 to 425 . We cannot do any better than 425 total tests. Further reduction in group size will increase total tests.

Comparative Statics Analysis

We can ask another question which, again, shows off the power of spreadsheets: what happens if the infection rate changes, say to 1%-what would be the optimal group size?

This kind of question is called comparative statics analysis because we want to know how our solution responds to a shock. We want to compare our initial, optimal group size of five when the infection rate was 5%, to the new solution when the infection rate is 1%. This comparison reveals how the shock (changing the infection rate) affects the optimal response (group size).
$S T E P$ Change cell A1 to 1%, then use the spreadsheet to find the optimal group size. What group size would you recommend? Why?

You may have struggled with this because it turns out that the total tests curve is rather flat at its minimum. Thus, a simulation with 400 repetitions does not have the resolution to distinguish between group sizes in the range from 8 to 14 or so. Figure 3.11 makes this clear.

The exact answer for the optimal group size is, in fact, 11 groups. It has an expected number of total tests of 195.57 (again, using analytical methods). Choosing group sizes of 10 or 12 lead to a slightly higher number of total tests-although it is impossible to see this in Figure 3.11.

An infection rate of 1% shows simulation may not be an effective solution strategy for every problem. Of course, you could create a Data Table with more repetitions, but using simulation to distinguish between group sizes 10 and 11 requires a Data Table so large that Excel would be unresponsive.

Figure 3.11: Optimal group size with a 1% infection rate.
As mentioned earlier, there are many Excel Monte Carlo simulation add-ins and they can do millions of repetitions. We used this free one in earlier work: tiny.cc/mcsim. Even if we ran enough repetitions to see that 11 is the optimal solution, you should remember that simulation will never give you an exact result because it can never do an infinity of repetitions.

The good news is that any group size around 10 is going to be a little under 200 which is an 80% improvement over individual testing. There is no doubt about it - pooled testing can be a smart, effective way to reduce the number of total tests performed.

Our comparative statics analysis tells us that the lower the infection rate (from 5% to 1%), the bigger the optimal group size (from 5 to 11) and the greater the savings from pooled testing versus individual testing (from about 675 to 800 tests).

Finally, if you carefully compare Figures 3.10 and 3.11 , you will see that the \#Groups Tested curve (a rectangular hyperbola since the numerator is constant at 1,000) stays the same in both graphs. Changing the infection rate shifts down the E[\#Pos Group Tests] relationship and this brings down and alters the shape of the $E[\#$ Total Tests] curve.

Comparative statics analysis shows that pooled testing is more effective when the infection rate falls. A lower infection rate means we can have bigger groups and yet they may still have no infected individuals in them.

Takeaways

Pooled testing means you combine individual samples. A negative test of the pooled sample saves on testing because you know all the individuals in the group are not infected.

There is an optimization problem here: too big a group size means someone will be infected and so you have to test everyone in the group, but too small a group size means too many group tests. The sweet spot minimizes the total number of tests.

The optimal group size depends on the infection rate. The smaller the rate, the bigger the optimal group size.

By creating this spreadsheet, you have improved your Excel skills and confidence in using spreadsheets. You added to your stock of knowledge that will help you next time you work with a spreadsheet.

The OFFSET function is really powerful, but it is difficult to understand and apply.

The Data Table is meant for what-if analysis, but it can be used as a simple Monte Carlo simulation tool. Each press of F9 recalculates the sheet and the Data Table.

You also learned or reinforced a great deal of statistical and economics concepts. Economics has a toolkit that gets used over and over again-look for similar concepts in future models and courses. Try to spot the patterns and repeated logic. Although it may not be explicitly stated, getting you to think like an economist is a fundamental goal of almost every Econ course.

Reference was made several times to the analytical solution. This was not shown because the math is somewhat advanced. To see it, download the PooledTesting.xlsx file from tiny.cc/busanalyticsexceland go to the Analytical sheet.

One methodology issue that is easy to forget, but crucial, is that we made many simplifying assumptions in our implementation of the data generation process. There may be other factors at play in the spread of covid or how tests actually work that affect the efficacy of pooling. Spatial connection was mentioned as something that would violate the independence assumed in our implementation. Another complication is that, "A positive specimen can only get diluted so much before the coronavirus becomes undetectable. That means pooling will miss some people who harbor very low amounts of the virus." Wu (2020)

Our results apply to an imaginary, perfect world, not the real world. We need to be careful in moving from theory to reality. This requires both art and science.

The introduction cited Dorfman as writing a paper on pooled testing back in 1943. It is a clever idea that you now understand can be used to greatly reduce the number of tests, which saves a lot of resources. Perhaps you will not be surprised to hear that Robert Dorfman was an economist.

References

Dorfman, R. (1943) "The Detection of Defective Members of Large Populations," Ann. Math. Statist. 14, no. 4, 436-440, projecteuclid.org/euclid. aoms/1177731363

Mandavilli, A (2020) "Federal Officials Turn to a New Testing Strategy as Infections Surge," The New York Times, July 1, 2020, www.nytimes.com/2020/07/01/health/coronavirus-pooled-testing.html

Wu, K (2020) "Why Pooled Testing for the Coronavirus Isn't Working in America," The New York Times, August 18, 2020, www.nytimes.com/2020/08/18/health/coronavirus-pool-testing.html

Growth

4.1 Growth Math

The learning objective is straightforward to state, but difficult to accomplish: a deep appreciation of the power of compounding. You want to go beyond the simple mechanics of growth and truly grasp the nature of the force unleashed by exponential growth.

In addition, there are two subgoals:

1. Measuring growth via the CAGR, the compound annual growth rate.
2. Understanding and using the Rule of 70 .

A Race

We are going to pit an arithmetic against a geometric sequence (or progression). This is not a mystery so we will reveal right now that the geometric sequence will win. Be on the lookout, however, for some surprising results.

An arithmetic sequence is a list of numbers with a common difference between each term. The sequence $4,9,14,19,24$ is an arithmetic sequence with 5 as the difference.

Instead of a constant additive increase, a geometric sequence progresses by applying a multiplicative constant to each term. So, $4,8,16,32$ is a geometric sequence with 2 as the multiplier. Notice that doubling is a 100% increase.

Starting from 4, it is easy to see that doubling beats adding 5 pretty quickly-by the third term. But what if we made it really uneven in choosing the additive and multiplicative constants?

Starting with $\$ 1$, what if you got $\$ 1,000,000$ more every day versus a 10% per day increase? We will use Excel to run this race.

Let's agree that the arithmetic sequence is going to jump out to a big lead. After two days, it has $\$ 2,000,001$ while the geometric sequence will have $\$ 1.21$. But what happens as time goes by?
$S T E P$ Save a blank Excel workbook as Growth.xlsx and enter the labels in row 2 as shown in Figure 4.1. In cells B1 and C1, enter the values $\$ 1000000$ and 10% (including the $\$$ and $\%$) and name the cells x and i (for interest rate). Use Excel's Help or the web if needed to name the cells and widen column B until the value is visible.

> EXCEL TIP Naming cells improves presentation and makes your implementation easier to follow. Using natural language text in formulas instead of cell addresses requires more setup time, but the improvement in readability of formulas is well worth the effort.

$S T E P$ Enter 0 and 1 in cells A3 and A4, respectively, then select both cells, click the bottom-right corner of cell A4, and drag down to cell A50. In cell B3, enter $\$ 1$ and in cell B4 enter the formula $=B 3+x$. Select cell B4 and double-click at the bottom-right corner to fill it down. Enter $\$ 1$ in cell C3 and the formula $=(1+i)^{*} C 3$ in cell C4. Fill it down.

	A		B		C	
1			$\$$	$1,000,000$		
2	Day		Amount	Amount		
3		0	$\$$	1	$\$$	
4		1	$\$$	$1,000,001$	$\$$	
5		2	$\$$	$2,000,001$	$\$$	
6		$\$$	$3,000,001$	$\$$	1.10	
7		4	$\$$	$4,000,001$	$\$$	

Figure 4.1: Setting Up the Race.
The formula in column C is produced by this algebraic simplification of the way the next term is produced in a geometric sequence:

$$
\begin{aligned}
& x_{t+1}=x_{t}+i x_{t} \\
& x_{t+1}=(1+i) x_{t}
\end{aligned}
$$

$S T E P$ widen columns B and C to make sure the numbers are visible in row 50 . It is obvious that $\$ 1 \mathrm{M}$ per day is way ahead of 10% per day, but let's make a chart to show how far ahead the arithmetic sequence is - select cell range A2:C50 and insert a Scatter chart. Give it a title (you can use Racing Sequences), label the x axis (Day would work), and insert text boxes without fills or outlines to label the two series.

Your chart has a line with a slope of $\$ 1 \mathrm{M}$ and what appears to be another line (the geometric sequence) on the x axis. The values of the geometric sequence are so small, you cannot tell that it is actually a curve. What happens if we extend the sequence?
$S T E P$ select cells A50:C50, click the bottom-right corner of cell C50 and drag down to row 153 . Widen column C to see the values and decrease the decimal places so only integer dollar values are displayed to make it easier to compare columns B and C.

After 150 days, the arithmetic sequence is still way ahead,roughly $\$ 150 \mathrm{M}$ to $\$ 1.6 \mathrm{M}$, but we can see that the geometric sequence is starting to really gather momentum.
$S T E P$ Extend the sequences to row 253.
After 250 days, the geometric sequence is almost 100 times bigger-almost $\$ 25$ billion compared to $\$ 250$ million. When did the geometric pass the arithmetic sequence?
$S T E P$ scroll back up to the top of the sheet, enter the label Difference in cell D2 and the formula $=C 3-$ B3 in cell D3. Double-click the bottomright corner of cell D3 to fill it down. Scroll down and widen column D as needed as you scroll.

You will see that the parentheses (indicating negative numbers) stop on day 201. That is the day the geometric sequence won the race and its lead will grow wider, ever faster, from then on.
$S T E P$ scroll back up and edit the SERIES formulas in the chart. Change the row numbers to 213 so that the formula for SERIES 1 looks like this:
$=$ SERIES(Sheet1!\$B\$2,Sheet1!\$A\$3:\$A\$213,Sheet1!\$B\$3:\$B213,1)
Do the same for the second series.

Figure 4.2 shows what your chart should look like. Do not be misled into thinking that the geometric sequence was not growing at first and then started growing really fast around day 150 . In fact, it grew at the same rate, 10%, every single day. Another mistake is to see every curve as having constant growth - do not fall into this trap.

Figure 4.2: The Geometric Sequence Wins!
One quick way to check if a curve is growing at a constant rate is to make the y axis a log scale.
$S T E P$ Click on the y axis (the $\$$ values) and check the Logarithmic scale box in the Axis Options on the right of your screen.

The chart dramatically changes. The curve becomes a line and the line a curve. The fact that a log scale linearizes the curve means the curve is growing at a constant rate.

Now, you might think that we are at the surprising result mentioned at the beginning. After all, it is pretty impressive that 10% per day, after starting so incredibly far behind and falling even farther behind, overtakes $\$ 1 \mathrm{M}$ per day, but no, that is not it.

The big surprise is actually that it does not matter what (positive) numbers you pick for the constant difference and multiplicative factor, the geometric will always eventually beat the arithmetic sequence.

Let's be clear about this. You can make the constant difference as big as you want and the multiplicative factor as little as you want (as long as it is positive) and the geometric progression will eventually win the race. That is shocking and reveals the force embedded in compounding.

You could argue that this is expected because multiplication is more powerful than addition and that is a true statement, but Figure 4.2 hints at another way to remember why geometric progressions are so powerful-they are curves instead of lines. Eventually, if they start from the same point and are both increasing, a curve will always pass a line.

You have undoubtedly heard about the power of compounding and it is true that compounding is an incredibly important concept in business. You want, however, to have a deep appreciation of the idea that compounding over long periods of time will produce remarkable results.
$S T E P$ Just to be sure and to give you another wow moment, reduce the multiplicative constant in cell C 1 to 1%. Will growing at 1% per day catch and beat $\$ 1,000,000$ per day? Amazingly, yes, you know it will, but when? Find the day the geometric sequence beats the arithmetic one. The answer is in the appendix.

CAGR

We can measure the rate of growth between any two points by using a formula called the compound annual growth rate, CAGR. The word annual is used because it is often applied to yearly data, but we can apply the CAGR to the daily frequency in the race we just ran. Instead of just stating the formula, it is worth seeing where it comes from.

We know that a geometric sequence is generated by adding a constant multiplicative factor (i) times the previous amount. Here are the first few terms, where x_{0} is the initial value, x_{1} is the next value, and so on.

$$
\begin{aligned}
& x_{1}=x_{0}+i x_{0}=(1+i) x_{0} \\
& x_{2}=x_{1}+i x_{1}=(1+i) x_{1} \\
& x_{3}=x_{2}+i x_{2}=(1+i) x_{2}
\end{aligned}
$$

The subscript tells us the time period, with zero meaning right now. The last equation above says the value of x in time period 3 equals the previous value of x plus the rate of growth times the previous value. The value of x in time period 3 also can be expressed as $(1+i)$ times the value in time period 2 .

We can rewrite x_{2} by substituting in the formula for x_{1} like this:

$$
x_{2}=(1+i) x_{1}=(1+i)(1+i) x_{0}=(1+i)^{2} x_{0}
$$

We can do the same for x_{3} :

$$
x_{3}=(1+i) x_{2}=(1+i)(1+i)(1+i) x_{0}=(1+i)^{3} x_{0}
$$

In fact, we could do this for any value in the sequence after the initial value:

$$
x_{t}=(1+i) x_{t-1}=(1+i)^{t} x_{0}
$$

The equation above says that starting from an initial value, x_{0}, the value of x at time t, x_{t}, will be $(1+i)^{t}$ times the initial value. We do not have to know the previous value to get the next value. All we need is the initial value, the rate of growth, i, and the number of time periods.

Since this equation expresses where every point will be in the sequence, we can solve for i like this:

$$
\begin{aligned}
x_{t} & =(1+i)^{t} x_{0} \\
\frac{x_{t}}{x_{0}} & =(1+i)^{t} \\
{\left[\frac{x_{t}}{x_{0}}\right]^{1 / t} } & =1+i \\
{\left[\frac{x_{t}}{x_{0}}\right]^{1 / t}-1 } & =i \\
i & =\left[\frac{x_{t}}{x_{0}}\right]^{1 / t}-1
\end{aligned}
$$

The last equation is the CAGR. We can write it in a more user-friendly way:

$$
\begin{aligned}
i & =\left[\frac{x_{t}}{x_{0}}\right]^{1 / t}-1 \\
C A G R & =\left[\frac{\text { Final Value }}{\text { Initial Value }}\right]^{1 / \text { Number of Time Periods }}-1
\end{aligned}
$$

Given any two numbers and the number of time periods, the CAGR tells us what the rate of growth must be if the numbers are part of a geometric sequence. Let's put this formula to work.
$S T E P$ Label cell E 1 as $C A G R$ and enter the formula $=(C 9 / C 3)^{\wedge}(1 / 6)-1$ in cell E2.

You calculated the rate of growth from the initial value of $\$ 1$ at $t=0$ to the value in the $6^{\text {th }}$ time period and this will equal the rate of growth in cell C1.

Be careful with the number of time periods in the CAGR formula. From $t=0$ to $t=6$ and from cells C3 to C9 there are seven numbers, not six. The number of periods is always one less than the number of values in the sequence. The number of time periods, t, is the amount of time that has elapsed since the start. For a length of one unit of time, you need two numbers, beginning and end.
$S T E P$ Modify your formula in cell E2 to compute the CAGR from time period 5 to 10 . You will know you have it right if cell E2 equals cell C1.

Of course, we constructed the geometric sequence in column C so we know the rate of growth. What if we did not know the rate of growth and had only beginning and ending values?
$S T E P$ click on an empty cell and compute the CAGR from an initial value of 11.7 in $t=0$ to 23.1652 in $t=14$.

The correct formula is $=(23.1652 / 11.7)^{\wedge}(1 / 14)-1$ and Excel should be displaying 0.05 . Notice that we do not need to know the numbers in the intervening time periods. If it is a geometric sequence, that is, growing at a constant rate, then we could compute the value at any time period using the generating equation, $x_{t}=(1+i)^{t} x_{0}$.

Let's show that values between initial and final are irrelevant and introduce another measure of growth, the average annual percentage change (AAPC).
$S T E P$ Insert a new sheet and enter the formula $=R A N D()^{*} 1$ in cell $\mathrm{A} 1,=R A N D()^{* 2}$ in cell A2, and $=\operatorname{RAND}()$ times 3,4 , and 5 in cells A3, A4, and A5. Make a graph by selecting range A1:A5 and inserting a Scatter chart. Press F9 (you may have to use the $f n$ key on your keyboard) a few times to recalculate the sheet.

Even though the values do not grow at a constant rate, we can compute the CAGR from A1 to A5.
$S T E P$ Label cell A6 $C A G R$ and, in cell A7, enter the formula to compute it from A1 to A5.

The formula you entered (to be sure: $\left.=(A 5 / A 1)^{\wedge}(1 / 4)-1\right)$ ignores the three points in between the first and last points. The CAGR assumes that a constant growth curve connects the first and last points.

There is another common measure of growth that does use all of the points, the average annual percent change.
$S T E P$ In cell B2, enter the formula $=(A 2-A 1) / A 1$ and fill it down.
Column B has the percentage changes from one year to the next. The average annual percent change takes the average of the percentage changes.
$S T E P$ Label cell B6 AAPC and enter the formula $=A V E R A G E$ (B2:B5) in cell B7. Press F9 a few times.

It is clear that the two measures are different. The CAGR answers a specific question: what is the constant rate of growth that would need to be applied to the initial value so that we end up at the final value? The AAPC does not have the property that applying the growth rate to the first value produces the last value. The AAPC is just an average of the annual percentage changes.

In fact, there are many more ways to measure growth than CAGR and AAPC, but these are the two most common ones. And, there are many more averages than the usual one. There is one called the geometric mean (mean and average are synonyms). Instead of adding the values and dividing by n (the number of values), you multiply them and then take the $\frac{1}{n}$ th root.
$S T E P$ Enter the formula $=A 2 / A 1$ in cell E2. Fill it down to E5. In cell E6, enter the formula $=\left(\mathrm{E} 2^{*} \mathrm{E} 3^{*} \mathrm{E} 4^{*} \mathrm{E} 5\right)^{\wedge}(1 / 4)$.

This is the geometric mean of the ratios in cells E2:E5. There is an easier way: use Excel's GEOMEAN function.
$S T E P$ In cell E7, enter the formula $=\operatorname{GEOMEAN}(E 2: E 5)$. Confirm cells E6 and E7 are equal.

You probably have not noticed, but there is an important discovery at hand.
$S T E P$ In cell E8, subtract 1 from the geometric mean in cell E6 or E7 (since they are the same).

Do you see it? Look carefully at cells A7 and E8-the CAGR and geometric mean of the ratios minus 1 are the same! That is striking.

The geometric mean has applications when the data generated come from a geometric sequence. For example, if an investment is growing at a constant percentage, we might use the geometric mean because, like the CAGR, it has the property that the growth rate applied to the initial value will equal the final value.

The Rule of 70

The growth rate of a geometric sequence can be used to determine the time needed to double. We use the generating equation, but this time we know we want the initial value to double and we want to solve for t :

$$
\begin{aligned}
x_{t} & =(1+i)^{t} x_{0} \\
2 x_{0} & =(1+i)^{t} x_{0} \\
2 & =(1+i)^{t}
\end{aligned}
$$

With t as an exponent, we face a challenge in solving for t. The path forward involves the logarithm, which is the inverse of exponentiation. We can take the natural $\log , l n$, of both sides to solve for t :

$$
\begin{aligned}
2 & =(1+i)^{t} \\
\ln (2) & =t \ln (1+i) \\
\frac{\ln (2)}{\ln (1+i)} & =t \\
t & =\frac{\ln (2)}{\ln (1+i)}
\end{aligned}
$$

We can use this formula to find the exact time it will take a geometric sequence to double. If the growth rate is 10% per time period, we plug that into the formula and compute it.
$S T E P$ Return to the sheet where you raced the sequences and set cell C1 to 10%. In cell G1, enter the label Exact Time to Double. In cell G2, enter the formula $=L N(2) / L N(1+i)$.

You used Excel's natural \log function, LN() , to compute that it will take a little over 7.2725 time periods for a geometric sequence growing at 10% to double.

Since the exact answer cannot be easily computed, an approximation is often used. It relies on the fact that $\ln (1+x) \approx x$.
$S T E P$ In cell G3, enter the formula $=L N(1+i)$.
With $i=10 \%, \ln (1+i)$ is almost 0.1 , confirming the fact. In addition, $\ln (2)$ is roughly 0.693 , or rounded to two decimal places, 0.70 . This means we can approximate the exact answer like this:

$$
\begin{aligned}
& t=\frac{\ln (2)}{\ln (1+i)} \\
& t \approx \frac{0.7}{i}
\end{aligned}
$$

We have derived the the Rule of 70, an approximation which can we write in a more friendly way like this:

$$
\text { Time to Double }=\frac{70}{\text { Growth Rate (in percentage) }}
$$

If the growth rate is 10% per day, the Rule of 70 says it will take 70 divided by 10 or 7 time periods to double. This is not exactly true. The exact time to double is displayed by cell G2, but it is reasonably close.
$S T E P$ with cell C 1 at 10%, notice that the initial value of $\$ 1$ almost doubles by the $7^{\text {th }}$ day and almost doubles again (to $\$ 4$) by the $14^{\text {th }}$ day.

We can try a different growth rate to see if the Rule of 70 works again. At 2% per day, the Rule of 70 says it will take about 35 days to double. Is this true?

$S T E P$ Change cell C 1 to 2%. Did the Rule of 70 work?

Yes, cell G2 shows it will take just a little longer than 35 days to double at 2%. Also, the value in column C is $\$ 2$ at $t=35$ and if you scroll down, you will see that it is $\$ 4$ at $t=70$. It really does double almost every 35 days with a 2% per day growth rate.
$S T E P$ set cell C1 70% and look at the values in column C.
The Rule of 70 is not doing well here. It is not true that we get doubling every year. This shows that the Rule of 70 works for "small" growth rates and the smaller, the better the approximation.

There is also the Rule of 72 which is a slightly worse approximation to $\ln (2) \approx$ 0.693 , but has more divisors than the Rule of 70 .

Growth Numeracy

Today's world population is roughly 8 billion, but humans started with small numbers and expanded. Galor (2022, p. 46) says,

At the eve of the Neolithic Revolution [the birth of agriculture], in the year $10,000 \mathrm{BCE}$, an estimated 2.4 million human beings roamed the earth. Yet, by the year 1 CE, as the Roman Empire and the Mayan civilization approached their height, the world's population had multiplied seventy-eight fold and soared to 188 million.

Generative AI exploded in the public's consciousness in November 2022 when OpenAI released its latest version of ChatGPT. This was followed by many competitors. As part of my exploration and interaction with these new tools, I repeatedly tried to get various AIs to compute the CAGR for the increase
in human population from 2.4 to 188 million over 10,000 years. Figure 4.3 shows one answer from ChatGPT 3.5 (free version) on June 7, 2023.

HB what is the growth rate for 2.4 to 188 for 10000 years?

```
To calculate the growth rate from 2.4 to 188 over 10,000 years, we can use the compound
annual growth rate (CAGR) formula. The CAGR formula is given by:
CAGR = (Ending Value / Beginning Value)}\mp@subsup{)}{}{\wedge}(1/\mathrm{ Number of Periods) -1
In this case:
Beginning Value (BV)=2.4
Ending Value (EV)=188
Number of Periods (N)=10,000 years
Let's calculate the growth rate:
CAGR = (188 / 2.4)^ (1/10,000) -1
Calculating this using a calculator or a spreadsheet, the growth rate (CAGR) from 2.4 to 188
over 10,000 years is approximately 3.23%.
```

Figure 4.3: ChatGPT 3.5 computing CAGR.

The AIs always do a good job of explaining how to do the problem, but sometimes give ridiculous answers. For example, the steps in Figure 4.3 are correct, but the final answer is nonsensical. At 3% per year, the Rule of 70 says there will be doubling around every 25 years. That would be 16 times in 100 years. We pass 78 -fold before 200 years.

A moment's reflection shows that a 3% growth rate over such a long period of time is going to produce a huge number. How huge? Excel says 1.03 to the $10000^{\text {th }}$ power is 2×10^{128}. Today's world population of 8 billion is 8×10^{9} so ChatGPT's answer is not in the ballpark.
$S T E P$ Use Excel to compute the CAGR for Galor's numbers: initial value of 2.4 and final value of 188 over 10,000 years. You can use ChatGPT's CAGR formula in Figure 4.3 since it did get that right.

In fact, the CAGR is tiny, about 0.000436 . Rounding roughly to 0.0005 , that is 0.05% and the Rule of 70 would give doubling every 1,400 years. Now that CAGR makes sense.

Lesson: Never trust generative AI with a mathematical computation. More broadly, never trust any fact produced by an AI. Always check its claims.

ChatGPT 4 (the paid version in 2023) with a Mathematica plugin gets the CAGR computation right. But I still check every number it produces. AI will undoubtedly get better, but I will remain skeptical of any factual claim it makes. You should also.

As a final example, Poundstone (2016, p. 211) asked this survey question: Suppose you put $\$ 1,000$ in a tax-free account that earns 7 percent per year on this investment. How many years will it take to double your original investment, to $\$ 2,000$?

1. Between 0 and 5 years
2. Between 5 and 15 years
3. Between 15 and 45 years
4. More than 45 years

Only 59% got it right. The Rule of 70 gives 10 years so the correct answer is between 5 and 15 years. It cannot be 0 to 5 since 7% of $\$ 1,000$ is $\$ 70$. So, $\$ 1,070$ next year, $\$ 1,147$ year 2 , and there's no way it reaches $\$ 2,000$ in five years. Likewise, 15 to 45 and more than 45 are obviously wrong since $\$ 70$ per year (ignoring compounding) times 30 years is over $\$ 2,000$.

More importantly, those getting the correct answer "reported $\$ 32,000$ more personal annual income, more than twice as much in savings, and rated themselves 15 percent happier" (Poundstone, 2016, p. 212). Maybe being numerate has its advantages.

Takeaways

In everyday English, exponential means really fast. In math, it means there is an exponent involved. Geometric sequences are exponential because they can be written with a generating equation like this: $x_{t}=(1+i)^{t} x_{0}$.

Geometric sequences are much more powerful than arithmetic sequences, especially over a long time period. It is hard to believe, but true that a geometric will always surpass an arithmetic sequence, no matter the positive constants used.

Mathematicians usually stress the multiplicative nature of geometric sequences to explain their power, but it is also true that, starting from the same place and pointing up, a curve will always eventually pass a line.

We compute the compound annual growth rate with this formula:

$$
C A G R=\left[\frac{\text { Final Value }}{\text { Initial Value }}\right]^{1 / \text { Number of Time Periods }}-1
$$

The geometric mean (Excel function GEOMEAN()) is another way to compute the CAGR.

The Rule of 70 is mental math. You can quickly roughly compute how long it will take to double by dividing 70 by the growth rate. You can use the Rule of 70 to check a computed growth rate for reasonableness.

The mathematics of how things grow, CAGR, geometric mean, and the Rule of 70 are all part of being numerate. We apply these ideas to economic growth in the next section.

References

Searching the web reveals that it is pretty clear that he never said it, but the quote in the epigraph attributed to Albert Einstein certainly rings true. He is also supposed to have said something like, "Compound interest is the Eighth Wonder of the World," but this is also doubtful. A good one that the person actually said is Charlie Munger (Warren Buffett's partner): "The first rule of compounding is to never interrupt it unnecessarily."

Galor, O. (2022) The Journey of Humanity (Dutton).
Poundstone, W. (2016) Head in the Cloud (Little Brown and Company), archive.org/details/headincloudwhykn0000poun

Appendix

A geometric sequence with a growth rate of 1% per day will pass an arithmetic sequence with a constant difference of $\$ 1 \mathrm{M}$ on day 2,161 . Yes, that is roughly 10 times longer than it takes the geometric progression growing at 10% per day. And, yes, if you tried 0.1%, it would take 10 times longer. But no matter how small you make the growth rate or how big you make the constant difference, eventually, the geometric sequence wins!

4.2 Growth Data

We apply the compound annual growth rate (CAGR) and Rule of 70 to long-run output data. The goal is to understand basic facts about economic growth around the world and over time.

Amazingly, economic growth is brand new. It is a mystery and the focus of intense research. Perhaps the biggest open problem in economics is why some countries grow and others do not. One result of uneven growth is that economic inequality across countries keeps getting bigger and bigger.

Data Source and Description

The data come from an economic historian named Angus Maddison. He spent his working life compiling and estimating a variety of economic and demographic variables around the world over very long periods of time. Briefly, Maddison data are high-quality, but they are noisier the farther back you go (Barreto, 2016). Visit www.theworldeconomy.org if you want to know more.

Annual gross domestic product (GDP) is the value of all final goods and services produced in a year. GDP is where we begin when we measure economic performance. There are three key adjustments that must be made to GDP when it is used to compare countries over time.

1. Inflation: GDP uses current prices to compute the value of output. If prices double, but the number of units produced stays the same, nominal GDP doubles. That is not what we want. Our measure of economic performance needs to reflect only changes in output, not prices. Thus, we use Real GDP because it holds prices constant over time and gives us a better measure of economic performance.
2. Population: If two countries have the same GDP, but one has more people, we would say the smaller country is more productive in terms of output per person. We divide Real GDP by the number of people to get Real GDP per person (or per capita) to measure economic performance.
3. Purchasing Power Parity: To compare the GDP of countries with different monetary units, we need to convert currencies. For complicated reasons, the best way to do this involves a hypothetical "international Geary-Khamis dollar" (for more detail and explanation: www.google.com/search?q=geary-khamis). Adjusting Real GDP for purchasing power parity by using international Geary-Khamis dollars gives us a better comparison of GDP across countries.

Real GDP per person adjusted for purchasing power parity is the key variable used to measure economic performance across countries over time. There is a lot of preparation and statistical adjustment needed before we begin analyzing the data. Fortunately, Maddison has done this heavy lifting for us.

It is undoubtedly true that Real GDP per person is a cornerstone of economic analysis, but it is far from perfect. Its biggest failing is that it says nothing about the distribution of output. We can divide an economy's GDP by the number of people, but it is not true that each person in that economy gets the same share of output. Measures of inequality in the distribution of output are an important aspect of economic performance that we will review later.

Accessing the Excel Workbook

$S T E P$ Go to tiny.cc/busanalyticsexcel and click the Excel Workbooks link (top right). Click LongRunGrowth.xlsm to download it. Move the file from your download folder to a folder on your computer or network.

Notice that the file has an xlsm extension. Regular Excel workbooks are xls or xlsx. The m stands for macro. LongRunGrowth.xlsm is a macro-enabled Excel workbook. When you open it, you must enable macros to get full functionality from the file.
$S T E P$ Open LongRunGrowth.xlsm, read the Intro sheet, and be sure to click the Click to Test button. You may have to adjust your security settings as described in the Intro sheet.

Basic Geography

The workbook contains several sheets. The IncomeGroups sheet has World Bank classification of 217 countries and administrative regions by income. There are low, lower-middle, upper-middle, and high income groups.
$S T E P$ Go to the IncomeGroups sheet and scroll down to see the countries in each group. Look at a few rows and think about what you know about those four countries.

For example, row 25 has Niger, Ghana, Dominica, and Switzerland. You probably knew Switzerland is a rich country, but did you know Ghana is lower income, but not as poor as Niger?

The countries are sorted alphabetically so we cannot say anything about their order within a group. This sheet tells us nothing about Niger versus Somalia or Uganda other than they are all in the lowest income group.

The map in the sheet looks different the usual world map. This is because it is doing an equal area projection. Unlike the usual Mercator map, which shows Greenland as huge, this map accurately reflects geographic size. It really is true that Africa is three times bigger than the United States.

The colors correspond to the income categories, as shown in the legend. While the map in the Excel workbook is informative, the online version is even better.
$S T E P$ click on the map or copy and paste the link below it in a browser to explore the interactive version online. It displays name and category information as you hover over the country.

Data Sheets

Maddison provides three sets of numbers, organized in three sheets. The first is Population, the second GDP, and PerCapita GDP is the third.
$S T E P$ click in each of the three sheets to see how the data are presented. Scroll down to see all of the countries in column A (down to row 198).

The countries are organized by a combination of geography and cultural connection. Western Europe is followed by Western Offshoots: Australia, New

Zealand, Canada, and the United States. Maddison also gives us groupings such as Latin America and East Asia.

As you scroll down, you will see labels that indicate how country borders have changed over time. Former Yugoslavia are the countries above it (as of 2010, when these data were compiled) and row 65 has the Former USSR.

Notice how the placement of the countries are the same in the three sheets. Maddison estimates population, then Real GDP in 1990 Geary-Khamis dollars for each country or group.

The values in the PerCapita GDP sheet are simply real GDP dvidied by the number of people. We focus on the data in the PerCapita GDP sheet because this is Real GDP per person adjusted for purchasing power parity-this is our measure of economic performance.

The OnlyCountries sheet removes all groups and headings from the PerCapita GDP sheet and displays an alphabetic listing of the countries. Sorting by Real GDP per person in 2008 compares the economies of these countries at that time.

EXCEL TIP sorting is one of the most dangerous things you can do in a spreadsheet. It is remarkably easy to destroy a data set by sorting only part of it. When you sort, be very, very careful.
$S T E P$ Select cell range A3:GR165 in the OnlyCountries sheet. The easiest way to do this is to click on cell A3, hold down the shift key, and click on cell GR165. Click the Data tab in the Ribbon, and click Filter (in the Sort and Filter group).

Excel has added downward pointing arrows in the cells in row 3. Clicking one of these arrows pops a menu and enables easy sorting of the data. You can remove the arrows by clicking the Filter button again.
$S T E P$ click the down arrow in column GR and select Sort Largest to Smallest.

Excel obliges and now shows Hong Kong in row 4. It is the richest country in the Maddison data set in 2008, the last available year. Today, Hong Kong
is not a country, but a special administrative region of China. It is still rich, but lists of richest countries today, using Real GDP per person adjusted for purchasing power parity, usually show Luxembourg, Singapore, and Ireland as the richest countries.
$S T E P$ scroll down slowly and look at the countries as they go by.
Switzerland is near the top, clearly in the high income group. Dominica (not the Dominican Republic) is not included in Maddison's data set (it is in the group of 21 small Caribbean countries). As you get near the bottom, you see Ghana (row 124), which is lower-middle income according to the World Bank. Niger, which is in the low income group, is third from the bottom.

The data show that Ghana's Real GDP per person of roughly GK\$1,500 is 3 x (three times) bigger than Niger. That is a lot, but nothing compared to the 50x difference between Switzerland and Niger. This staggering difference is evidence of an important lesson that we will explore again:

Lesson 1: Country Real GDP per person is wildly uneven.

We can see the massive dispersion in economic performance by noting that the range in Real GDP per person goes from a few hundred GK dollars in the poorest countries to 30,000 GK dollars in the richest countries. We can display this in a histogram.
$S T E P$ select cell range GR3:GR165, click the Insert menu item in the Ribbon, and click the Histogram chart type. Click the x axis and change the number of bins to 30 .

Your histogram shows a tall rectangle at the left, indicating many poor countries, then a spread out distribution gradually getting smaller and smaller as you go right (these are the richest countries).

Another way to see the big disparity in economic outcomes is by computing the standard deviation of Real GDP per person for these countries.
$S T E P$ Enter the formula $=\operatorname{STDEV} \cdot P(G R 4: G R 165)$ in cell GR2.
The SD displayed in cell GR2 says that the typical amount of dispersion
around the average is about GK $\$ 8,0000$. That is a lot of dispersion since the average is also around GK $\$ 8,000$.

It has not always been this way. We will see when we start looking at long-run growth that countries used to be much closer in terms of economic performance, but we can also find evidence for this lesson in the short run.
$S T E P$ copy cell GR2 and paste it in cell GJ2. Paste again in cell FZ2. 1990 is the earliest we can compute the SD for this set of countries because the Soviet Union collapsed in 1989 and many countries in the set were part of the USSR. Even for this short period of time, the numbers are striking. The SD falls from GK $\$ 8,000$ in 2008 to under GK $\$ 7,000$ in 2000 and to GK $\$ 5,400$ in 1990. This is evidence for the second lesson:

Lesson 2: The disparity in country Real GDP per person is rising.

In fact, this part of the story is complicated. With free-flowing information and technology, we should see convergence in Real GDP per person. There is some evidence that a subset of countries do converge (so the SD of Real GDP per person would get smaller). Overall, however, as Maddison's set of countries shows, the spread in Real GDP per person has been growing.

Growth over the Long Run

Now that we know how Maddison created and organized the data, we are ready to use the data to examine the historical record to learn about economic growth. Begin with a screencast that introduces the Compare sheet and emphasizes this lesson:

Lesson 3: Economic growth is brand new.

STEP Watch vimeo.com/econexcel/longrungrowth

The screencast says that, for millennia, every country was poor. Yes, there were a few rich individuals, mostly monarchs and rulers, but everyone else was living at a subsistence level. It is only in the last few hundred years that
some countries have broken out of the poverty trap.
Why did growth suddenly (on a time scale of millennia) explode on the scene? Why did only some countries grow? Believe it or not, we do not actually know the specific mechanisms involved. It was not simply money or trading since both have been around for a lot longer than the last few hundred years.

Economists point to the market system as the driver of growth. This loosely defined concept involves private property rights, rule of law, entrepreneurship, widespread individual striving for wealth, and celebration of financial success. This complicated, poorly understood cocktail of institutions and cultural norms has many names, such as capitalism and free enterprise.

We do not know exactly why, but growth emerged in Europe roughly a few hundred years ago and then it evolved unevenly. Some countries grew and others did not. Some grew fast and others slow. The Compare sheet can be used to display examples of this, as shown at the end of the screencast.
$S T E P$ Use the Compare sheet from 1950 to 2008 to see if Maddison data agree with the World Bank classification of Sudan as low income and Egypt as lower-middle income.

Your chart shows that these two countries, which share a border and were roughly equal in 1960, are no longer so. Egypt has done much better than Sudan and now has double the Real GDP per person.
$S T E P$ Choose an upper-middle income country from the IncomeGroups sheet and add it to the chart.

Adding an upper-middle income country changes the scale of the y axis and places another series above Egypt and Sudan.
$S T E P$ Add a rich country from Europe to your chart.
The y axis scale changes again and the spread of the four countries is quite large. Sudan is pushed close to the x axis with Egypt slightly above it. Notice that the gap between the rich European country you added and your upper-middle income country is big.

So far, we have been tracking the level of Real GDP per person, but we are also interested in the growth rate of Real GDP per person. The next screen-
cast shows how we can use the Maddison data set and Compare sheet to find the growth rate and it makes this point:

Lesson 4: 2% per year in Real GDP per person is the magic growth number.

$S T E P$ Watch vimeo.com/econexcel/cagr.

Joseph Schumpeter is well known for his theory of the entrepreneur as innovator, perhaps best captured in the oxymoron creative destruction. Schumpeter, like many others who have studied economic growth, was awed by the productive powers of the market system.

In Capitalism, Socialism, and Democracy, published in 1942, Schumpeter used data to describe the historical success of capitalism before pronouncing that it could not survive. The heroic entrepreneur would become obsolete as rational, scientific thinking took hold. This has not happened (yet).

Using noisy, imperfect measures of Real GDP per person, Schumpeter found that the United States had enjoyed a spectacular run from after the Civil War to the Great Depression. He concluded that if this performance was repeated another 50 years, "this would do away with anything that according to present standards could be called poverty" (Schumpeter, 1942, p. 66).

Let's see if Maddison data agree with Schumpeter as we explore the historical economic performance of the US economy.
$S T E P$ Use the Data Vertical button to get Real GDP per person in the United States in a vertical column (as shown in the screencast). Compute the CAGR in the United States from 1870 to 1929 and from 1950 to 2008 (as shown in the screencast). What would Schumpeter have said had he lived to see how the United States economy performed until 2008?

The United States actually did even better in the second half of the $20^{\text {th }}$ century (2.06% per year) than during the Civil War to the Great Depression (1.77% per year). Schumpeter would have been shocked by this performance.
$S T E P$ Go to the Compare sheet and display US Real GDP per person from 1870 to 2008. Click the Show Ann \% button.

Your chart is a snapshot of US economic history. There are three periods:

1. Before the Civil War, the United States was underdeveloped, rural, and quite poor.
2. After the Civil War, reconstruction and western development created a truly national economy that grew rapidly.
3. The Great Depression was traumatic, as was World War II, but the US economy has done extremely well since the 1950s.

CAGRs of 1.86% per year from 1870 to 2008 and 2.06% per year since 1950 are excellent analytics for the US economy. The Rule of 70 tells us we will get doubling in Real GDP per person every generation. But can we really count on this going forward? No, the fifth growth lesson says we cannot:

Lesson 5: Growth is not assured.

STEP watch vimeo.com/econexcel/growthnotassured

There are many individual countries that could be used to support the lesson that growth is not assured, but perhaps Japan is the most surprising example.
$S T E P$ From the Compare sheet, display Japan's Real GDP per person from 1950 to 2008. Click the \log button.

The log scale linearizes exponential curves and clearly shows the remarkable reversal in the Japanese economy. From 1950 to 1973 the Japanese economy grew at an incredible 8% per year. That is doubling every 9 years!

But your chart shows that it suddenly leveled off in 1973. From 1973 to 1991, it grew at 3.3% per year. This is still excellent and everyone thought Japan would take over the world (much like China is feared today).

And, then suddenly, it all came to screeching halt. From 1991 to 2008, Japanese CAGR fell to 1% per year. Look carefully at your log-scale chart to see how flat the line is starting around 1990.

Why did this happen? We do not know. Standard macroeconomic policies to stimulate the economy have not worked. Japan is an aging society with
a rapidly falling birth rate and it does not especially welcome immigrants so demographic explanations abound. But this is typical of how economists study growth - we come up with stories after the fact. No one predicted the sudden reversal in economic performance in Japan.

Remember, however, the difference between levels and growth. Japan remains a rich country. If you visit, you will see all the markers of wealth, such as shopping malls and fancy restaurants. Japanese enjoy long life expectancy and high education levels. The lack of growth, however, is a serious problem for the future.

Figure 4.4: US and Japan Real GDP per person, 2022 Euro PPP. Source: wid.world/world/\#agdpro_p0p100_z/US;JP.

Maddison data only goes to 2008. What has happened to the United States and Japan since then? While there are many websites to choose from for country comparisons, an excellent one is wid.world, Figure 4.4 shows that Japan was growing incredibly fast until the early 1970s. It slowed down, but did well until 1990. Since then, it has gone sideways. An economic juggernaut from 1950 to 1990, but suddenly stagnant the last few decades: Japan is a good example of the lesson that growth is not assured.

We conclude our whirlwind tour of economic growth across time and around the world with a final lesson:

Lesson 6: Seemingly small differences in CAGR produce huge gaps in levels.
It is easy to think that there is little difference between percentage point changes in growth rates. After all, 0.01, 0.02, and 0.03 are all "small" numbers. So are they basically the same? No. Compounding is a powerful force and this is why we need to be careful when we compare CAGRs.
$S T E P$ Return to the OnlyCountries sheet and copy it. Add a filter if needed and sort by 1900, largest to smallest. Delete all countries (rows) without data for 1900 .

You should have a sample of 39 countries with Real GDP per person values in 1900. The UK is richest and China is poorest when sorted by 1900 value.
$S T E P$ In cell GS3 enter the label, CAGR since 1900, and in cell GS4 enter the formula for the CAGR, $=(\operatorname{GR} 4 / \mathrm{CN} 4)^{\wedge}(1 / 108)-1$. Fill it down. Delete the columns from 1901 to 2007 so that 1900 and 2008 are side-by-side to enable easy comparison.

Compare New Zealand and the United States, in second and third place in 1900 in Real GDP per person. From that time to 2008, the US growth rate is about half a percentage point (0.005) higher. This seemingly small difference produces a huge gap by 2008 - 31,178 to 18,653 in 1990 GK dollars. A picture is worth a thousand words.
$S T E P$ In the Compare sheet, display the US and New Zealand from 1900 to 2008.

That is astounding. Starting from essentially the same place, the "small" 0.5% point difference generates a huge gap by 2008 .

Scroll down and look at Portugal and Sri Lanka. Again, they are essentially even in 1900 (and both poor), but in 2008 Portugal is 3 x richer. Why? Because it grew 1% point faster than Sri Lanka.
$S T E P$ Return to the Compare sheet and display Portugal and Sri Lanka from 1900 to 2008.

Again, the picture is striking. That seemingly small percentage point difference causes a huge difference after 108 years of geometric progression.

A mathematician would not be surprised. They might point out that the difference between 1% and 2% CAGR is a "small" one percentage point, but it is a "big" 100% difference. We have doubled the CAGR when we go from 1 to 2 percent per year.

This lesson applies to personal finance. An expense ratio for an ETF or mutual fund that is a "small" 0.5% will end up seriously decreasing the value of the investment over time. This is worth remembering.

Summary

There are many business applications of CAGR and the Rule of 70, but applying these tools to Real GDP per person across countries is a great way to learn data analytics and the amazing story of economic growth.

Robert Lucas won a Nobel Prize in Economics and he drilled it when he said,
Is there some action a government of India could take that would lead the Indian economy to grow like Indonesia's or Egypt's? If so, what exactly? If not, what is it about the "nature of India" that makes it so? The consequences for human welfare involved in questions like these are simply staggering: once one starts to think about them, it is hard to think about anything else (Lucas, 1988, p. 5).

The data show that economic growth exploded on the world stage just a few hundred years ago with the advent of the market system and simultaneous revolutions in science and industry. As a result, billions of people live healthier, richer lives. It is, of course, also true that billions remain poor and we need to figure out exactly what it is about the market system that enables growth and development.

Solving the puzzle of economic growth is the biggest open problem in economics. The puzzle is both incredibly challenging and critically important that we figure it out.

If you do not believe this, consider Haiti and the Dominican Republic. Go to the Compare sheet and display real GDP per person for these two countries from 1950 to 2008.

It will only take a few seconds to do this (that is what is so powerful about this workbook) and the resulting chart is guaranteed to absolutely blow you away.

In "The Underlying Tragedy," an editorial in the October 15, 2010 edition of The New York Times, David Brooks communicates the frustration generated by our ignorance:

Why is Haiti so poor? Well, it has a history of oppression, slavery and colonialism. But so does Barbados, and Barbados is doing pretty well. Haiti has endured ruthless dictators, corruption and foreign invasions. But so has the Dominican Republic, and the D.R. is in much better shape. Haiti and the Dominican Republic share the same island and the same basic environment, yet the border between the two societies offers one of the starkest contrasts on earth - with trees and progress on one side, and deforestation and poverty and early death on the other.

Lucas was right, once you start thinking about economic growth and are aware of the tremendous variability in outcomes, it is hard to think about anything else.

Adam Smith's Inquiry into the Nature and Causes of the Wealth of Nations was first published in 1776, at the dawn of the British Industrial Revolution. Smith had no data on Real GDP per person, but he knew something really weird was going on. He asked a fundamental and enduring question, "Why are some countries rich and others poor?"

We still do not know the answer.

Takeaways

Angus Maddison spent his life compiling estimates of output per person stretching all the way back to 1 AD. Maddison's data enable us to see longrun economic growth.

A generation is roughly 30 years so growth of a little over 2% per year will produce doubling every generation. That is considered really good for rich countries.

Poor countries often grow faster than 2% when they first adopt the market system. This is called catch-up growth.

It is easy to fall into the trap of thinking that Real GDP per person is a perfect measure. It is not. It has several weaknesses, but perhaps its biggest problem is that it says nothing about the distribution of output.

Here are the six lessons in one place:

Lesson 1: Country Real GDP per person is wildly uneven.

Lesson 2: The disparity in country Real GDP per person is rising.

Lesson 3: Economic growth is brand new.

Lesson 4: 2% per year in Real GDP per person is the magic growth number.

Lesson 5: Growth is not assured.

Lesson 6: Seemingly small differences in CAGR produce huge gaps in levels.

References

Lucas, R. (1988), "On the Mechanics of Economic Development," Journal of Monetary Economics, 22, pp. 3-42.

Schumpeter, J. (1942) Capitalism, Socialism, and Democracy (George Allen \& Unwin Ltd.)

4.3 PV and IRR

You are teaching a child about money. You lay out three United States nickels, worth 5 cents each, in a row and then two dimes, each worth 10 cents, below the nickels, as in Figure 4.5.

Figure 4.5: Three Nickels and Two Dimes: Which is worth more?

You ask the child if the nickels or the dimes are worth more. The child says the nickels because there are more of them. Yes, more is better, you say, but nickels and dimes are not equivalent. How would you explain that two dimes are worth more than three nickels?

You could replace each dime with two nickels and now you have four nickels in the bottom row. With everything in nickels, we would easily see that the bottom row has more nickels and so it is worth more.

Or, if you have bunch of pennies lying around, you could replace each nickel with a stack of five pennies and each dime with a stack of ten pennies. With everything in pennies, we can use the child's "more is better" logic: 20 pennies is more than 15 pennies.

Both approaches rely on standardizing the two options so that we are comparing apples to apples. You have no problem knowing that two dimes are worth more than three nickels because you are instantly converting the coins to cents. You are standardizing without even knowing it.

If you think this is obvious, then you will have no problem with present value. It does the same thing, translating money in the future to money now so that we can correctly determine worth. Let's see how it works.

Present Value (PV)

Whenever you are faced with a decision involving money over time, there is a complication because of the fact that money has a time dimension. The confusing part is that we often ignore the time unit on money, but it is definitely there.

Everyone knows that $\$ 1,000$ right now is worth way more than $\$ 1,000$ fifty years from now. Both are denominated in dollars, but both also have a differing time unit so they are not equivalent.

Just like you cannot treat nickels and dimes as equivalent coins, you cannot directly compare numerical values of money at different points in time. You also would not say that "I have 3 cars and 4 pencils so I have 7 carpencils" because cars and pencils are different things and "carpencils" is meaningless. The same is true of money at different points in time.

If you had a portfolio of $\$ 1,000$ in cash and a promise (that you could rely on with certainty) of $\$ 1,000$ fifty years from now, you cannot say that this portfolio is worth $\$ 2,000$. Although less obvious, this is the same as saying "I have 7 carpencils."

There is, however, a way to value your portfolio - convert the future money into present value. This is exactly the same as the strategy we used for the nickels and dimes problem in Figure 4.5.

The common time period chosen is usually the present and this is why it is called present value. Alternatively, future value uses a common time period in the future.

Suppose we want to know the present value of $\$ 10,000$ five years from now with a 9% discount rate (dr). We are looking for the number that, if allowed to grow at 9% would be $\$ 10,000$ five years from now.
$S T E P$ Open a blank Excel workbook and save it as PVIRR.xlsx. Enter the text You get in cell A1 and in cell B1, enter $\$ 10000$ (using the $\$$ automatically formats the cell as $\$$). In cell C1, enter the text in year and enter the 5 in cell D1. In cell E1 enter the text and $d r$ is and 9% in cell F1 (again, using \% correctly formats the cell). Name cell F1 $d r$ (the easiest way is by selecting cell F1 and then clicking in the Name Box and entering $d r$).

To be clear, present value is the amount needed right now (the present) so that it will grow into a given target value (in the future). Present value answers the question: "How much is a future amount of money worth today?"
$S T E P$ In cell A2 enter the label Year and in cell B2 enter the label Value. In cell A3, enter the number 5, followed by 4 in cell A4, 3 in cell A5, and so on down to 0 in cell A8. Enter the formula $=B 1$ in cell B3.

Now, what is the formula in cell B4? In previous work, we saw that the next number $(t+1)$ in a geometric sequence was given by:

$$
\begin{aligned}
& x_{t+1}=x_{t}+i x_{t} \\
& x_{t+1}=(1+i) x_{t}
\end{aligned}
$$

Here we are doing the reverse of that. Instead of the next number (which we know), we want the previous number that produced it.

$$
\begin{aligned}
x_{t+1} & =(1+i) x_{t} \\
x_{t} & =\frac{x_{t+1}}{(1+i)}
\end{aligned}
$$

Instead of i, by convention, we use the phrase discount rate $(d r)$ for the constant growth rate when we compute present value. We are discounting, or lowering, the number when we present value it. The \% growth rate used is also sometimes abbreviated with the letter r. No matter what symbol you use, what you are doing is computing what the previous number in the sequence would be if it grew at that constant growth rate.
$S T E P$ In cell B4, enter the formula, $=B 3 /(1+d r)$, assuming you named cell F1, dr. Format cell B4 as $\$$.

Excel shows $\$ 9,174.31$. If you had that amount of money, it would grow to $\$ 10,000$ in a year with a growth rate of 9% per year.

$S T E P$ select cell B4 and fill it down to cell B8.

You are showing the present value of $\$ 10,000$ five years from now with a 9% discount rate. In other words, if you had $\$ 6,499.31$ right now, in five years it would become $\$ 10 \mathrm{~K}$ by growing at 9% per year.

There is, of course, a faster way. We can bring a number for any future time period, t, back to the present, $t=0$, with the Present Value Equation:

$$
x_{0}=\frac{x_{t}}{(1+d r)^{t}}
$$

The present value, x_{0}, depends on three inputs:

1. The amount in the future
2. The discount rate (which is the growth rate)
3. The number of time periods in the future
$S T E P$ In cell C8, enter the formula $=B 1 /(1+d r)^{\wedge} 5$.
The equivalence of cells B8 and C8 confirms that the one-step version of the present value computation works.

The Present Value Equation makes clear that farther in the future the lower the present value since you would divide by a bigger number as t rises. Similarly, the higher the discount rate the lower the present value.
$S T E P$ Change the discount rate in cell F 1 to values higher and lower than 9% and keep track of the PV in cells B8 and C8.

If you set the discount rate to zero, then the present value is the same as the future amount. Without any growth rate, to reach the target future amount, you have to start with that future amount.

The Lottery Decision

The biggest lottery jackpot as of this writing was on November 8, 2022, to one Powerball ticket in California for $\$ 2.08$ billion! Lotteries always advertise their jackpot as the total payout even though it is distributed over time.

As usual, the winner took the immediate cash alternative, which was $\$ 997.6$ million-a little less than half of what they would have received in 30 payments over 29 years. There are many ways to think about how to decide between taking a single amount now versus a stream of payments. One way is to compute the present value of the stream of payments and compare it to the cash alternative.

Real-world lotteries have complicated payout schemes with rising amounts over time so we will consider a simple, hypothetical lottery with a constant payout. Let's suppose that the jackpot is $\$ 1.5$ million which is paid out in 30 payments of $\$ 50,000$ each year. The immediate cash alternative is $\$ 750,000$.

So, which one would you take and why? We agree that saying, "Give me the $\$ 1.5$ million because it is more than $\$ 750,000$ " is exactly equivalent to the child saying, "I like 3 nickels more than 2 dimes because there are more of them." We have to do the present value math. If you are leaning toward the lump sum now, present valuing might change your mind.
$S T E P$ Insert a new sheet in your PVIRR.xlsx workbook. Enter the label Year in cell A1 and the label Amount in cell B1. In cell A2 a 0 followed by a 1 in cell A3. Select cells A2 and A3 and then fill down to cell A31. It should show a value of 29 . Enter $\$ 50000$ in cell B2 and the formula $=\mathrm{B} 2$ in cell B3. Fill it down. This way we can easily change the payment stream. Finally, sum the $\$ 50,000$ payments in cell B32.

Of course, cell B32 should show $\$ 1.5$ million. Less obvious is the fact that in a real sense, this is an illegal sum. The $\$ 50,000$ come at different times so they are not equivalent. Excel (and the lottery people) do not care about the time dimension of money, but ignoring the time unit does not make it go away.

We can compute the sum correctly if we present value all of the payments. That way, we will be adding dollars that have the same time unit-the present.
$S T E P$ In cell C1 enter the label $P V$ and in cell D1 enter 5%. Name cell D1 $I R R$ (explained below). In cell C 2 enter the formula $=B 2 /(1+I R R)^{\wedge} A 2$ and fill it down.

Cell C 2 is the same as B 2 because the present value of any amount right now is that amount. The zero in the exponent for time makes the denominator 1. But look at the other values in column C. They are getting smaller and smaller as you look down. That is because it takes less money now (present value) to grow to $\$ 50,000$ the farther in the future we get the $\$ 50,000$.
$S T E P$ Copy cell B32 and paste it in cell C32.
You are looking at the correct way to sum the stream of payments. We have a single number, $\$ 807,054$, to represent its value. The "simple" addition of the 30 payments of $\$ 50,000$ is a gross misrepresentation of the true value of the stream of payments. It is amazing to people who understand the timevalue of money that lottery jackpots are allowed to be advertised as the sum of payments over time.

We would never compare the $\$ 1.5$ million to the immediate cash payout, but we can directly compare the present value to the immediate cash payout. With 5% per year, the present value of the stream of payments is greater than the immediate payout so we would take the stream of payments.

There is one problem, however, the present value depends on the discount rate used.
$S T E P$ Change cell D1 to 10% and scroll down to see the present value of the stream of payments.

The future amounts are all smaller (since the growth rate is bigger) and the sum of the present values for each payment is $\$ 518,480$. Since this is less than the immediate cash payout of $\$ 750,000$, we should take the cash amount in this case.

This shows that there is no one-size-fits-all answer to deciding the question of cash or stream of payments. It depends on the discount rate used. If you had the ability to invest the immediate cash payout at 10% per year, the cash payout is worth more to you. If, however, the best you can do is 5% per year, then you would take the stream of payments.

Internal Rate of Return (IRR)

We can use the fact that the present value depends on the discount rate to explain the internal rate of return. We begin by computing the IRR (also known as the ROR or rate of return) for our hypothetical lottery question of how to take our winnings.
$S T E P$ In cell F1 enter the label Amount and in cell F2 enter $\$ 750000$. Enter $\$ 0$ in cell F3 and then fill it down to cell F31.

Columns B and F now have two alternative streams. One is $\$ 50,000$ from now until year 29 and the other is $\$ 750,000$ now and nothing until year 29 . We subtract column F from B to create a single series that captures two streams.
$S T E P$ In cell H1 enter the label Net Amount and in cell H2 enter the formula $=$ B2-F2. Fill it down to cell H31.

Column H makes clear that we can frame the question of how to take our lottery winnings as an investment project. Cell H2 shows negative $\$ 700,000$ (the parentheses and red text signal that the dollar amount is less than zero) so this is what we are committing to this project. In return, we get the stream of $\$ 50,000$ payments in the future.

We need to present value the amounts in column H in order to make them have the same time unit, the present.
$S T E P$ In cell I1 enter the label $N P V$ and in cell I2 enter the formula $=H 2 /(1+I R R)^{\wedge}$ A2. Fill it down to I31. Copy cell C32 and paste it in cell I32.

Cell I32 shows the net present value for a given discount rate. If this number is positive, then the investment project ($\$ 50,000$ over 29 years) is worthwhile; if it is negative, it is not. At 5%, the project is worthwhile (take the stream of payments); at 10% it is not (take the immediate cash payout).

This work leads us to an interesting question: what is the break-even discount rate? In other words, what is the percentage growth rate that would make the net present value be zero?
$S T E P$ In cell K1 enter the label $I R R$ and in cell K2 enter the formula $=I R R(H 2: H 31)$. You do not need to provide a guess parameter.

The Excel function IRR computes the internal rate of return which is the 5.72% displayed in cell K2. The IRR function is solving for the value of IRR in this equation:

$$
0=\frac{x_{0}}{(1+I R R)^{0}}+\frac{x_{1}}{(1+I R R)^{1}}+\frac{x_{2}}{(1+I R R)^{2}}+\ldots+\frac{x_{29}}{(1+I R R)^{29}}
$$

There is no analytical solution for finding the value of IRR in the equation above so Excel uses an iterative algorithm. The guess parameter helps the function find a solution in more complicated investment projects. In fact, for really complicated projects with costs and returns appearing over time, the IRR method can fail. Such projects require use of the NPV method.
$S T E P$ Copy cell K2, select cell D1, click the down arrow on the Paste item in the Ribbon (in the Home tab) and paste Values.

Cell I32 is now displaying a value that is almost zero. "E-10" means 10 to the minus 10 power, so it has ten zeroes after the decimal point. This demonstrates that Excel's IRR function correctly computed the IRR, the value of the discount rate that sets the net present value to zero.

The IRR tells us the quality of the investment project. The higher the IRR the better the project.

We can compare the IRR of different projects. Suppose you have an investment opportunity that earns you 10%. Then you would take the immediate cash payout. However, if your best investment option yields only 5%, then the IRR of this project is higher and you would take the stream of payments.

Notice that we get the same answer to which option to take if we use the discount rate to compute the present value of the stream or compare that same discount rate to the IRR.

Takeaways

Suppose someone asked you if you'd prefer 100 US dollars or 840 Tajikistani somoni (yes, that is the currency of Tajikistan). Which would you choose? You certainly would not say, " 840 is more than 100 so I will take the somoni."

You cannot answer until you use the exchange rate to convert the 840 somoni to dollars or 100 dollars to somoni. Once they are in the same units, you can compare the values.

Just as you need an exchange rate to compare money denominated in different currencies, you need to convert money paid or received at different points in time to a common denominator so that you can make the right comparison.

We say, "The present value is $\$ 100$ " to express the value of a future amount today.

We also use present value as a verb, "to present value" means to do the computation of dividing the future amount by $(1+d r)^{t}$.

The Present Value Equation is:

$$
x_{0}=\frac{x_{t}}{(1+d r)^{t}}
$$

Choosing the discount rate can be complicated and is beyond the scope of this book. It depends on the riskiness of the investment and other factors.

Especially for projects with long time horizons, present value can be extremely sensitive to the chosen discount rate.

The higher inflation the more discounting of a future amount of money, but the concept of present value does not depend on rising price levels. Even with zero inflation (constant prices) we would see positive discount rates and, therefore, discounting of money in the future.

The IRR is the discount rate that sets the NPV $=0$.

The IRR is a number that can be used to judge an investment project. If $I R R>$ hurdlerate (the market interest rate or cost of funds), then the project is worth pursing.

The IRR only works for simple investment projects with upfront costs and future returns. For more complicated projects, the NPV method should be used.

The NPV method uses the decision-maker's discount rate (the market interest rate or cost of funds) to present value the net stream. If $N P V>0$, then the project is worth pursuing.

The NPV and IRR methods will give the same answer. Thus, using both methods is a good check on the computations and final decision.

Lottery jackpots are misleading because they do not advertise the immediate cash option. They announce total dollars over time which is like saying that the winner gets 7 carpencils.

There is no way a lottery would be allowed to state the jackpot as the sum of dollars over time if it was a financial product. Lotteries, however, are run by state agencies and are exempt from truth in advertising laws.

Lotteries falsely advertise the jackpot because eye-popping numbers are great for the lottery business. More people are attracted to buy tickets as the jackpot rises and huge sums can trigger lottery mania where many new customers buy tickets.

Most winners choose the immediate cash payout, but this decision should include consideration of the time value of money. Even without considering the tax implications, the lump sum option is usually the wrong decision on strictly financial terms.

4.4 College IRR

Almost everyone thinks a college education today is expensive, but they still underestimate how much it really costs. The tuition, fees, and books are tens of thousands of dollars, but that is just out-of-pocket cost.

Even more costly is foregone income. Instead of going to college, you could be working and earning money. Adding opportunity cost to out-of-pocket cost yields a total cost of hundreds of thousands of dollars over four years.

There is no doubt about it - college is really expensive!

If it is so expensive, why do people go to college? Because there is a strong positive relationship between education and earnings - the more educated you are, the more money you make, on average.

But exactly how much more do college grads earn? Figure 4.6 shows the college wage premium (as a percentage over high school wage) is about 75%.

Notice that Figure 4.6 shows a great deal of variation in the college wage premium for different demographic groups. Asians have the highest excess returns for college.

Figure 4.6 also shows that, after covid, the college wage premium has fallen. This is due to higher wages for workers without a college degree after the pandemic.

One thing the chart does not show is the college wage premium by major. College graduates with degrees in quantitative fields such as Business Analytics earn higher incomes, on average, than non-quant majors.

Figure 4.6: The college wage premium over time.
Source: Bengali, et al., 2023.

The college wage premium chart is focused solely on the higher incomes earned by college graduates. It does not capture any of the other benefits from a college education: access to more and better jobs, lower unemployment and poverty rates, longer and healthier lives, higher savings rates for retirement, and better educated children.

We will ignore these other benefits and consider only the higher incomes earned by college graduates. This is weighed against the cost of college, which we know is high and has been rising rapidly. So, is college still worth it? We will compute the college internal rate of return (IRR) to answer this question.

Visualizing the College Decision

Figure 4.7 is a stylized graph (it accurately represents a relationship without actual data) that displays the costs and benefits of college. It shows that college grads make more over their lifetimes. It also captures that both paths grow, but college grows faster.

The three letters in Figure 4.7 label three areas in the chart. A represents the tuition, books, and fees a college student pays. Notice how the college student starts out negative because of these expenses.

B represents the income the college student does not earn while they are in college. As mentioned above, this foregone income is even greater than the schooling payments.

Finally, C represents the gains from college in terms of higher income over a person's lifetime. This adds up to hundreds of thousands of dollars, but remember that these are future dollars.

A person deciding whether or not to go to college needs to weigh the out-ofpocket (-A) and opportunity (-B) costs versus the excess returns (+C) from going to college instead of working right out of high school.

Figure 4.7: A Stylized Graph of the Decision to Attend College $\mathrm{A}=$ out-of-pocket costs; $\mathrm{B}=$ opportunity costs; $\mathrm{C}=$ excess returns

Figure 4.7 also makes clear that time is an important part of the problem. You cannot simply look at the graph and conclude that the area of the excess returns (C) is much bigger than the costs (A and B) so college is a good investment. The excess returns are in the future so we cannot directly compare them to the costs. In fact, every year on the Age axis is a dollar amount with different units.

To solve this problem correctly, we have to apply the concepts of present value and internal rate of return. We do so with a simplified version of the problem.

A Toy Model

$S T E P$ Insert a sheet in your PVIRR.xlsx workbook. Enter the labels Age, HS, and College in cells A1, B1, and C1, respectively. In cell A2 enter 18 and in cell A3 enter 19. Select the cells and fill down to age 64 (row 48). In cell B2 enter $\$ 40000$ and in cell B3 enter the formula $=B 2$. Fill it down. In cell C2 enter - $\$ 20000$ (this is the out-of-pocket cost) and in cell C3 enter the formula $=C 2$. Fill it down to cell C5 (representing four years of college). In cell C6 enter $\$ 70,000$ and in cell C7 enter the formula $=C 6$. Fill it down.

You have created a simplified version of the decision to attend college. Figure 4.8 is a chart of the data in columns A, B, and C . It does not display the subtlety of increasing income over time, but it does have the essential nature of the decision - the college path has investment upfront and starts out negative, but you are compensated for this by higher future earnings.

Notice also that our simplified problem's college income of $\$ 70,000$ per year is 75% more than the high school graduate's $\$ 40,000$ - this reflects the realworld college wage premium of 75%.

Figure 4.8: A Simplified Version of the Decision to Attend College
But how can we determine if the investment in a college education is actually worth it?
$S T E P$ Enter the label College Project in cell E1 followed by the formula $=C 2-B 2$ in cell E2. Fill it down to cell E64.

Now we clearly see the nature of the investment project. You invest $\$ 60,000$ each year for four years ($\$ 20,000$ out-of-pocket and $\$ 40,000$ in opportunity costs) and in return you get $\$ 30,000$ each year until you retire.

How can we determine the quality of this project? That is easy with Excel.
$S T E P$ Enter the label $I R R$ in cell G1 and in cell G2 enter the formula $=\operatorname{IRR}(E 2: E 48)$.
10.5% per year is a pretty good rate of return. It is likely that you cannot do better than this with another project so you would make the human capital investment and go to college.

The problem can also be solved by computing the net present value. Using any discount rate less than the IRR will give a positive NPV and result in the same decision to go to college.
$S T E P$ Enter the label $d r$ in cell I1 and the value 6% in cell I2. Enter the labels $P V H S$ and $P V$ College in cells J 1 and K 1 , respectively. In cell J 2 , enter the formula $=\mathrm{B} 2 /(1+\$ \mathrm{I} \$ 2)^{\wedge}(\mathrm{A} 2-18)$ and fill it down to cell J48. In cell K 2 , enter the formula $=\mathrm{C} 2 /(1+\$ \mathrm{I} \$ 2)^{\wedge}(\mathrm{A} 2-18)$ and fill it down to cell K48.

The dollars in columns J and K can be added because they all have the same time dimension-age 18 dollars.
$S T E P$ Enter the label sum of $P V H S$ in cell L1 and compute the sum of the present-valued high school dollars in cell L2. Enter the label sum of PV College in cell M1 and compute the sum of the present-valued college dollars in cell M2.

With a discount rate of 6%, the college income stream is worth $\$ 826,135$ present-value (age 18) dollars which is more than the $\$ 660,975$ produced by the high school option. Thus, you would go to college.

Figure 4.9 offers a good way of understanding and remembering what present value is all about. Present value operates like scrunching an accordion, compacting the x axis values back to the origin. Present value brings the dollars at different ages back to age 18 so that they can be compared.

Figure 4.9: Visualizing present value.
Unlike Figures 4.7 and 4.8 that show dollar values over time, Figure 4.9 removes the time element from the graph. It adds up the present value at each year and shows the sum as a single dot at Age $=18$.

Notice how the PV and IRR methods agree. With a discount rate of 6% both green-light college. PV because the PV of the college stream at 6% is greater than the PV of the high school stream and IRR because 10.5% is greater than 6%.
$S T E P$ change the discount rate in cell I2 to 11.5%. What is the optimal decision now?

PV says not to go to college because the present value of the college stream is less than the high school stream. IRR is also flashing a red light since the IRR of 10.5% is less than the discount rate of 11.5%.
$S T E P$ Enter the formula $=G 2$ in cell I2. What happens?
You just showed that Excel's IRR function is working as advertised. The sum of the present values of the two streams are identical when the discount rate is 10.5% so this is the IRR. PV says it is an absolute tie so flip a coin on going to college and IRR says the same thing because IRR = discount rate.

Did you notice that we never added the dollars in columns B and C? That would be a silly thing to do, right?

Loose Ends

There have been many, many estimates of the rate of return to college. Usually, college IRR estimates are pretty high. Even though college costs are rising fast all around the world, the demand for skilled labor is such that college remains a good investment for most people.

While college is still a good investment for most people, rising costs definitely lower the college IRR.

Just like the college wage premium has substantial variation when disaggregated into groups (as shown in Figure 4.6), college IRRs vary across groups. For example, male college IRR is usually lower than female IRR because male opportunity cost is often higher. Young, unskilled men have greater access to construction and farm jobs. Not surprisingly, a greater percentage of women than men go to college.

One critical aspect of the college IRR is that you have to finish. The absolutely worst possible move is to go to college for several years, pay tens of thousands of dollars in out-of-pocket and opportunity costs and not graduate. Now you have made an investment (and perhaps have student debt) and the return is really low because college only pays off with higher wages if you have a college degree.

The risk of going to college and not graduating is a serious issue. Correctly modeling the college IRR to include the riskiness of the investment in college is the focus of much research.

Takeaways

People with college degrees earn more, on average, than those without. This makes sense because very few people would go to college if they did not get a return on their investment.

College is an investment, it is called human capital, and it has an IRR. In fact, it is usually quite high and going to college for many people is a sound financial decision.

PV and IRR are two ways to make a decision about an investment with costs and returns over time. They yield the same answer.

The present value method brings all of the expenses and returns over time to the present. If the net present value is greater than zero, the investment is a winner at that given discount rate. Choosing the discount rate can be complicated.

The internal rate of return is the discount rate that sets the NPV $=0$. The IRR is a measure of the quality of an investment. If the IRR is greater than the discount rate, the investment is a winner.

References

Bengali L., Sander M., Valleta R., and Zhao C. (2023) "Falling College Wage Premiums by Race and Ethnicity" FRBSF Economic Letter www.frbsf.org/economic-research/publications/economic-letter/2023/august/falling-college-wage-premiums-by-race-and-ethnicity

Unemployment

5.1 FRED Excel add-in

FRED, the Federal Reserve Economic Data archive, compiles information from many sources. It is freely available online at fred.stlouisfed.org/, but we will access it through the FRED Excel add-in. This saves a lot of time and effort in getting the data in Excel for further analysis.

We bypass the appstore FRED add-in from fred.stlouisfed.org/fred-addin/ because it is error-prone and unstable with older Excel versions. Instead, we will work with a legacy FRED add-in file that is reliable and easy to use.
$S T E P$ Download FRED.xlam from tiny.cc/addin. Use the Add-ins Manager (keyboard shortcut alt, t, i) to install it.

We will use the FRED add-in to get and work with unemployment data, but an important goal is to demonstrate the remarkable power of this open-access software. It opens the door to a huge trove of data.

To set the stage for our work on unemployment, recall that an economy's long-run performance is measured by the growth rate of Real GDP per person. The magic number for rich countries is 2% per year. This gives doubling of output per person roughly every generation.

When we focus on the short-run, or the business cycle, we cannot use GDP because it takes too long to compile the data and publish the results. GDP is computed quarterly with a few months of lag and is often revised after initial release.

We need something at this moment that tells us how the economy is doing right now. There is new work being done on this problem using internet activity, but the traditional approach to measuring the current state of the economy relies on a monthly labor market survey.

Each month, the Bureau of Labor Statistics (BLS) releases the results of its Current Population Survey (CPS). Tens of thousands of households around the United States are interviewed and people are asked about their jobs, earnings, and other details.

In the third week of each month, the BLS releases a report on the number of workers, jobs, and, perhaps most importantly, the unemployment rate for the previous month. You can see that we are already a month behind in our quest to read the economy, but this is much better than GDP.

The unemployment rate is a key indicator of short-run economic performance. When it is high, the economy is doing poorly and when it is low (but not too low), the economy is doing well. The magic number for the overall unemployment rate is around 4 to 5%.

$S T E P$ Use your favorite browser to search for the "current unemployment rate",

You interpret the unemployment rate by seeing if it is around 4% and by its change from the previous month.

Our goal is understand how the unemployment rate is computed and what it tells us. We proceed by explaining how unemployment is defined and measured. Along the way, we will learn about other labor statistics and seasonal adjustment. In the next section, we examine subgroups of people - unemployment is not the same for everyone. We will see that the overall unemployment rate masks substantial variation across demographic groups and geographic areas.

Defining and Measuring Unemployment

Labor market statistics are based on a series of mutually exclusive categories. We place people in groups, or buckets, and then compute ratios. We begin with the total population.
$S T E P$ Open a blank Excel workbook and save as Unemployment.xlsx. Enter pop (or $P O P$, case does not matter) in cell A1, click on the $F R E D$ tab in the Ribbon, and click the Get FRED Data button in the top-left corner.

You just used Excel to connect to the St. Louis Fed and downloaded the total population in the United States from the FRED website! Notice the blue link in cell A5. If you click it, you go to the FRED web page for this variable and it has more documentation.

As you just saw, the FRED Excel add-in is easy to use, but you do need to know how it works. You control what you get by providing four inputs:

1. Series ID
2. Data manipulation (can be blank)
3. Frequency (can be blank)
4. Start Date (can be blank)

The FRED add-in works by taking the information you input in the first four rows of a spreadsheet and then outputs the results in two columns starting in row 5 . The only thing required is the Series $I D$; it fills in default choices if the other three items are not given.
$S T E P$ change cell A3 from M to A (it can be lowercase a) and click the Get FRED Data button. You can also use the Frequency Aggregation button in the FRED menu, but typing the letter a is easier.

You now have total population in the United States on an annual (yearly) basis. Taking into account the units of the variable in cell B1, we can see the US population was about 335 million people in 2023.

Notice that cell B3 continues to display "Monthly" because that is the original frequency of the variable. By entering an A, you directed FRED to report the variable on a yearly basis.

To get to the unemployment rate, we walk through a series of separations, as depicted in Figure 5.1. Each step down splits the category above into two mutually exclusive parts.

From a total population of 335 million people, we remove everyone who is in the military, prison, or a hospital. There are several million people in this category. The United States has one of the highest incarceration rates in the world (see www.sentencingproject.org/research) and a large standing army so the civilian, non-institutionalized population is about 330 million people.

Figure 5.1: Labor Market Survey Flow Chart with FRED Series IDs.

Next, we split the civilian, non-institutionalized population into children, those under 16 years old, and working-age people, those 16 and over. The US today, like most rich countries, is rather old with only about a fifth of the population under 16 years old.

The next step is crucial. We separate the 265 million working-age people into two groups: those who want to work and those who do not. Those who work or want to work are said to be in the labor force. Those who do not (for example, they are in school, retired, or taking care of children) are out of the labor force.

Finally, the last split in Figure 5.1 separates the labor force into two parts: those with a job (employed) and those without a job (unemployed). In August 2023, the number of unemployed people was quite low relative to the total number of people in the labor force.

The numbers in Figure 5.1 are much more volatile at the bottom than the top. The number of people unemployed fluctuates quite a bit, while the population numbers at the top change much more slowly and predictably.

Figure 5.1 also reveals that not having a job does not guarantee that you are unemployed. After all, you might not have a job, but you might not want one. Then you are not unemployed, but out of the labor force. To be defined as unemployed, you must not have a job and want to work.

Now that we have the major labor market categories, we can compute two important labor statistics:

- Unemployment Rate $=\frac{\text { Unemployed }}{\text { LaborForce }}$
- Labor Force Participation Rate $($ LFPR $)=\frac{\text { LaborForce }}{\text { CivNonInstPop16+ }}$

The unemployment rate is the percentage of the labor force that is unemployed. The $L F P R$ is the percentage of the civilian, non-institutionalized, working-age population that is in the labor force.

Unemployment Data

We can apply the framework in Figure 5.1 to practice our FRED skills, confirm the numbers in each category, and replicate the unemployment rate and LFPR statistics that are reported by the BLS.
$S T E P$ In cell c1, enter CNP16OV (civilian non-institutionalized population aged 16 and over. so the penultimate character is the uppercase letter O not the number 0). Click the Get FRED Data button.

Notice that the dates are not aligned. We need to fix that.
$S T E P$ Enter 1/1/1952 (the latest of the dates for the two series) in cells A4 and C4. Click the Get FRED Data button.

We can make a chart of the two series with FRED's built-in graphing tool.
$S T E P$ click the Build Graph button and select Create Multiple Series Graph. Click Series 1 and select pop. Click Series 2 and select CNP16OV. Click the Build Graph button in the bottom left corner.

You created a chart in the signature FRED style, with a blue border and source information at the bottom. Multiple series charts do not include titles. You can add a title and other enhancements via the usual chart op-tions-it is an Excel chart that can be edited and manipulated like any Excel chart.

We continue on our whirlwind tour of labor market statistics and FRED by confirming that the labor force is the sum of employed and unemployed peo-
ple and showing how the unemployment rate and LFPR are computed.
$S T E P$ Insert a new sheet in your workbook. Using the Series IDs in Figure 5.1, get data on the civilian, non-institutionalized population 16 and over, labor force, employed, and unemployed from $1 / 1 / 1952$. See the appendix if you have trouble.

Notice that in row 5, with the clickable link that takes you to the FRED website, the word Level is used. This is standard macroeconomics terminology for the value of a variable or indicator at a point in time. Often, we take the levels and perform other computations, such as the percentage change.

The level of Employed in January 1952 is 60,460 (in cell F8). Does this mean there were 60,460 people working in the United States at that time? No, that is simply too small a number. Cell F2 tells us that the data are in thousands so the employment level was $60,460,000$ at that time.
$S T E P$ In cell I7, enter the label $E m p+$ Unemp=LF Check. In cell I8, enter a formula to confirm that this is true. See the appendix if you need help.

Having confirmed that the labor force is the number of people working plus the number of people unemployed, we can use the data to compute the unemployment rate and LFPR.
$S T E P$ In cell J7, enter the label UNRATE. In cell J8, enter a formula that computes the unemployment rate. Format the unemployment rate as a percentage with one decimal point. See the appendix if you need help.

How can we check our work? That is easy. We use the FRED add-in to download the unemployment rate and see if we got the same numbers.

But we have a problem-we do not know the Series $I D$ for the unemployment rate. Fortunately, FRED has a search tool that we can use to find the Series ID.
$S T E P$ Click the Data Search button (with the magnifying glass) in the FRED menu. Enter the search text unemployment rate and click the Search button.

FRED displays a lot of hits, but the top two look promising. If you scroll
right in the search window, you will see the Series IDs and other information. The only difference between the two is that one is $S A$ and the other is $N S A$. This means seasonally adjusted and not seasonally adjusted.

We seasonally adjust variables that vary systematically over the year. For example, construction employment falls in the winter and rises in the summer. Seasonal adjustment would tweak the construction employment numbers higher in the winter and lower in the summer so we can remove the seasonal component and make a better comparison across months.
$S T E P$ click the SA (topmost) unemployment rate to select it as shown in Figure 5.2. Click the Add Series ID button at the bottom of the search window and click close.

Figure 5.2: FRED's Data Search window.

FRED places information in cells I1:I4. We need to move it so that FRED does not download data on top of our work in columns I and J.
$S T E P$ Move cell range I1:I4 to cells K1:K4. Replace the start date with $1 / 1 / 1952$. Click the Get FRED Data button.

It is immediately obvious that our computed version of the unemployment rate matches the Series ID UNRATE.
$S T E P$ Replicate Figure 5.3 by clicking the Build Graph button and selecting Create Graph(s). Select the UNRATE series and check the option, Include U. S. Recession Shading. Finally, click the Build Graph(s) button.

Figure 5.3: The US unemployment rate over time.

The gray bars mean the economy was in a recession. Increases in the unemployment rate are strongly associated with recessionary periods.

The most recent spike was during the covid pandemic. The data in your spreadsheet show the highest unemployment rate was 14.7% in April 2020 (cell L827). Fortunately, it rapidly came back down.
$S T E P$ Apply the same steps used for the unemployment rate to the LFPR. Find the Series $I D$, download the data, and compare it to your own computed version to confirm they are the same. Create a chart of the LFPR with recession shading to replicate Figure 5.4. See the appendix if you need help.

Figure 5.4: The US LFPR over time.

Unlike the unemployment rate, which bounces around a lot, the LFPR saw a steady increase until the early 2000s, when the labor force was about twothirds of the civilian, non-institutional population 16 and older.

The LFPR fell dramatically during the covid pandemic, down to about 60% before recovering a bit. In 2023, it is still lower than its peak. This means working-age people are not as interested in working as they used to be.

Takeaways

The FRED Excel add-in is a powerful tool that instantly downloads data from FRED into Excel.

It works by taking input from the first four rows of a sheet. Only the first row, with the Series $I D$, is required.

If you do not know the SERIES ID, search for it with the Data Search tool.
The charts created by the FRED add-in have a signature blue border and source information. FRED uses Excel's Line chart type and this requires the same dates for all series.

Unemployment statistics are generated by the results from the monthly Current Population Survey.

The questions are designed to create mutually exclusive categories, such as younger than 16 years old or 16 and over.

To be unemployed, you have to be without a job, but want to work. If you do not want to work (you are in school or retired or any other reason), you are out of the labor force. See Figure 5.1.

The unemployment rate is the ratio of the number of people unemployed to the number of people in the labor force.

The magic number (like batting .300) for the unemployment rate is 4% to 5%. In the long run, we want Real GDP per person growth of 2% per year and the higher the better. High unemployment is bad, of course, but the UNRATE can be so low that the economy overheats and prices rise too fast.

Because the unemployment rate is estimated every month, it is used as a predictor of short-run economic performance.

The LFPR (labor force participate rate) is another important labor market statistic. It is the ratio of the number of people in the labor force to the number of civilians 16 and over who are not institutionalized (in prison or a medical facility).

References

The epigraph is from the opening sentence of the last chapter of Keynes, J. M. (1936) The General Theory of Employment, Interest and Money. Full text online at www.marxists.org/reference/subject/economics/keynes/general-theory.

This book led to the reorganization of economics into micro- and macroeconomics. It also radically changed the way economists thought about the role of government. Instead of passive onlookers, after Keynes, the Fed and other government actors saw themselves as responsible for actively managing the economy.

Appendix

Download Four Series

To download the civilian, non-institutionalized population 16 and over, labor force, employed, and unemployed from $1 / 1 / 1952$, enter the Series IDs in row 1: CNP16OV in cell A1, CLF16OV in cell C1, CE16OV in cell E1, and UNEMPLOY in cell G1.

In row 4 of columns A, C, E, and G, enter 1/1/1952.
Click the Get FRED Data button from the FRED menu.
In a few moments (depending on the speed of your internet connection and how much data it needs to download), the spreadsheet fills with data for the four variables you requested, beginning with labels in row 7 , followed numbers.

Emp+Unemp=LF Check

In cell I8, enter the formula $=D 8-F 8-H 8$. and fill it down.
The many zeroes confirm that the sum of Employed and Unemployed equals the Labor Force. The few ones are rounding error. It is definitely true that the labor force is number of people 16 and over who have or want a job.

Compute UNRATE

In cell J 8 , enter the formula $=H 8 / D 8$. Click the $\%$ button in the Home tab in the Ribbon and add a decimal place (using the button right next Percent Style button). Fill it down.

LFPR

The first hit in a search of labor force participation rate is CIVPART. Selecting it and clicking the Add Series ID button puts the information on the sheet, but you have to move it to cell M1:N4.

Do not forget to change the date to $1 / 1 / 1952$. If you do forget, then change the date and download the data again.

With CIVPART downloaded in columns M and N , enter the label $L F P R$ in cell O7 and the formula $=D 8 / B 8$ in cell O8. Format it as $\%$ with one decimal place. Fill it down.

It is easy to see that your LFPR in column O replicates CIVPART in column N .

To make the chart, simply click the Build Graph button and select CIVPART.

5.2 Unemployment by Subgroups

The headline unemployment rate number (with FRED Series ID UNRATE) is widely reported and discussed. Every month, the Current Population Survey (CPS) asks about 60,000 households a series of questions and their answers are used to take the pulse of the economy.

We are pleased when we hear the unemployment rate is around 4% or that it has fallen from the previous month if it is above 4%.

We know, however, that a single number cannot possibly tell us everything about something as complicated as an entire economy. The overall unemployment rate is an aggregate, high-level view of the economy. By zooming in and breaking it into its constituent parts, we can learn more about how the economy is really doing.

Male and Female

As of this writing, the CPS gives people the option of answering that they are either male or female. We can download unemployment rates for these two groups and compare them to the overall unemployment rate.

There is a better way to get the needed Series IDs than searching for them, but you need the older, more stable version of the FRED Excel add-in available at tiny.cc/addin. If you installed it in the previous section, it should be available, but use the Add-in Manager (alt t, i) to access it, if needed.
$S T E P$ Insert a sheet in your Unemployment.xlsx workbook and click the FRED tab on the Ribbon. Click Browse Popular Data Releases and select Household Survey. Move your cursor over Unemployment Rate (16yrs +) and select it, as shown in Figure 5.5.

Figure 5.5: FRED Popular Data Releases options.

FRED puts UNRATE in cell A1. This is certainly a fast and easy way to get a Series $I D$! Of course, it only works for variables that are popular and often downloaded.

We repeat this process to get male and female unemployment rates. As you do it, be sure to look at the other variables available in the household survey (which is the CPS). Notice how some of them are indented, capturing the logic of the survey.
$S T E P$ click Browse Popular Data Releases and select Household Survey again, but this time select Adult Men (20yrs +). Repeat one more time, but select Adult Women (20yrs +).

FRED places the Series IDs for male and female unemployment rates in cells C1 and E1. With this information, we are ready to download the data.

$S T E P$ click Get FRED Data.

With the data downloaded, we can proceed to create a chart that compares male and female unemployment.
$S T E P$ Click Build Graph and select Create Multiple Series Graph. Select both LNS series.

FRED creates the chart, but it is not ready for prime time. The legend needs work and it has no title.
$S T E P$ copy and paste the chart. In the pasted chart, make the legend display Male (20yrs +) and Female (20yrs +) by directly editing the SERIES formula. Move the legend text box so that it does not obscure the plotted data. Add a title. See the appendix if you need help.

Your finished chart should look like Figure 5.6. Notice that the female unemployment rate used to be higher than male from the 1950s to the mid 1980s. Since then, they are roughly similar except for the Great Recession of 2008. Surprisingly, the male unemployment rate was much higher than female during that time period.

Figure 5.6: A FRED chart of historical male and female unemployment rate.

Teenage Unemployment

$S T E P$ Insert a new sheet in your workbook and download the overall unemployment rate and the teenage unemployment rate. Create a chart of these two series with a descriptive legend and title. Follow the same steps as before.

Figure 5.7 shows that the teenage unemployment rate is always much higher than the overall unemployment rate. The reason is not simply because many teenagers do not work. Remember, many teenagers in high school or college will say they are not looking for work so they are not counted as unemployed.

Figure 5.7: Teenage unemployment is always higher than overall.

Teenage unemployment is always so high because teenagers who are looking for work are unskilled and have relatively few potential job opportunities. Thus, teenagers who want to work have a difficult time finding a job.

Teenagers are especially vulnerable during recessions when their already high unemployment rate goes even higher. Figure 5.7 shows that the pandemic was especially hard on teenagers as their unemployment rate was over 30%.

Unemployment by Race and Ethnicity

We can use Browse Popular Data Releases to select the unemployment rate for the available racial and ethnic groups. We download data for the overall, White, Black, Asian, and Hispanic groups, with Series IDs of UNRATE, LNS14000003, LNS14000006, LNS14032183, and LNS14000009, respectively. Then we make a chart using the Scatter type as described below. Figure 5.8 shows the result of this work.

Figure 5.8 can lead to confusion and misunderstanding. The differences observed between these groups are not necessarily indicative of their abilities, but rather a consequence of complicated historical and societal forces.

The main message of Figure 5.8 is the tremendous variability across these groups. Black unemployment rates are the highest, with Hispanic unemployment also higher than overall. The Asian unemployment rate is the lowest.

The Asian, White, and overall unemployment rates are pretty tightly clumped
together, but the Hispanic rate is often several percentage points higher. The Black unemployment rate is sometimes ten percentage points higher-a truly staggering difference.

Figure 5.8: High variability in unemployment rate by race and ethnicity.

While FRED's Build Graph tool allows selection of only three series, we created Figure 5.8 by adding more series by copying and pasting the SERIES formula and editing it.

We also had to change the chart type from Line to Scatter to get around the fact that the variables have different start dates.

Excel stores dates as a number, the number of days since January 1, 1900. Confusingly, Mac Excel 2008 and earlier used a date system based on $1 / 1 / 1904$. Many mistakes were made when a workbook was shared across Windows and Mac Excel, but today's workbooks avoid this complication.
$S T E P$ select cell A8 and click the down arrow on the Format button in the Home tab. Select the Format Cells option at the bottom of the list, then select General as shown in Figure 5.9 and click OK.

Figure 5.9: Formatting date values.
Excel shows 17533 in cell A8. This is the number Excel has for that cell. If you format it as a date, it can be displayed in a variety of date formats.

EXCEL TIP Dates in Excel are numbers. This means they can be manipulated by mathematical operations like addition and multiplication. The exact same date value can be displayed in many ways, such as $3 / 14$, 14 -Mar, and so on.

To make sure you truly understand how dates are handled in Excel, try this quick example.
$S T E P$ Enter the dates $1 / 1 / 1899,1 / 1 / 1900$, and $1 / 1 / 1901$ in three separate cells. Format the cells as General.

Excel displays $1 / 1 / 900$ as 1 and $1 / 1 / 1901$ as 367 (1900 was a leap year so it had 366 days). Nothing, however, happens to $1 / 1 / 1899$ because it is not a number, it is text (notice the left-justification). You can subtract $1 / 1 / 1900$ from $1 / 1 / 1901$ and get 366 , but you cannot use $1 / 1 / 1899$ (or any date before $1 / 1 / 1900$) in an arithmetic operation. This is worth remembering if you ever work with dates older than $1 / 1 / 1900$.

Now that you really understand that dates are numbers, it is easy to see that we can make a Scatter chart using dates as the x axis variable.

$S T E P$ Create a chart of the UNRATE series alone using the Build Graph

 tool. Click on the chart and in the Design tab, click the Change Chart Type button and change the type from Line to (X Y) Scatter and select Scatter with Straight Lines. Click OK.The horizontal axis now starts from zero and there are so many labels that it looks like a thick black line under the horizontal axis. We need to fix this.
$S T E P$ Double-click the x axis and change the minimum value to 17533 (which is the date $1 / 1 / 1948$) and change the Major units to 3650 (so every ten years). Enter yyyy in the Type field in the Number options at the bottom.

Although FRED's Build Graph tool allows a maximum of three series on a chart, you can add more variables to an existing chart by copying, pasting, and editing the SERIES formula. Your final goal is a chart like Figure 5.8.

Figure 5.8 also has several enhancements that improve its readability:

1. The series are ordered with Black as 1 and Asian as 5 so that they are listed in the legend in that order. This makes it easier for the reader to understand that Black unemployment is highest and Asian is lowest.
2. The dates on the x axis are formatted in years.
3. The overall series is thicker and colored black to help it stand out.

The legend text order can be difficult to control. Microsoft support says this, "Under Chart Tools, on the Design tab, in the Data group, click Select Data. In the Select Data Source dialog box, in the Legend Entries (Series) box, click the data series that you want to change the order of. Click the Move Up or Move Down arrows to move the data series to the position that you want."

Unemployment by Education

The final set of subgroups available in the Browse Popular Data Releases is education. Like race and ethnic groups, there is great variation in unemployment rates by education level.
$S T E P$ click Browse Popular Data Releases and get the unemployment rate for people aged 25 years and older, along with the four subgroups below it. Create a chart that clearly displays the unemployment rate of these groups.

Takeaways

The Browse Popular Data Releases button is another way to use FRED. While we focused on the household survey (CPS) and unemployment rates, it is easy to see that there are many other popular data series that are a click away.

While UNRATE, the overall unemployment rate for the United States, is undoubtedly the main indicator of economic performance, it is also true that it suppresses a great deal of variability.

Different subgroups experience wildly different levels of unemployment. Especially during recessions, teenagers, Black and Hispanic, and less-educated people suffer disproportionately higher unemployment.

Disaggregating the unemployment rate to reveal differences among subgroups is an example of a general strategy. Like an average hides dispersion in a list of numbers, UNRATE never tells the whole story.

Appendix

Editing the Legend Text

$S T E P$ Click the male unemployment series so you see its formula in the formula bar: =SERIES("LNS14000025",MF!\$C\$8:\$C\$915,MF!\$D\$8:\$D\$915,1). Replace LNS14000025 with Male (20yrs +). Press enter.

Repeat this procedure for the female unemployment rate.

5.3 Seasonal Adjustment

Data are smoothed when they exhibit a strong seasonal pattern. Seasonal adjustment enables better comparison by removing the seasonal trend.

Many statistics are routinely seasonally adjusted. We use the unemployment rate an example of what seasonal adjustment does and how it works.

We use a powerful Excel tool called a PivotTable (notice that Microsoft does not use a space between the two words). Introduced in 1994 in Excel 5.0, Microsoft's Help says that PivotTables are "an interactive way to quickly summarize large amounts of data."

An Example

We begin by getting seasonally adjusted (SA) and not seasonally adjusted (NSA) versions of the unemployment rate.
$S T E P$ In a blank sheet, search FRED for unemployment rate and select the two top hits. Click Add Series ID and close the search box.

Excel enters UNRATE and UNRATENSA in the top row of your spreadsheet. These are both measures of the unemployment rate, but one is seasonally adjusted and the other is not. How do they compare?
$S T E P$ Download data for both series and make two separate charts.

It is easy to see that the UNRATENSA chart is much more jagged than the UNRATE chart. The raw, unadjusted unemployment rate is always higher in the winter and summer and falls quite a bit in the last quarter as retail sales increase.

We can see this seasonal pattern more clearly by looking at the unemployment rate for each month. To do this, we need to prepare the data and then make a PivotTable.

Our strategy is to use Excel's TEXT function to extract the month from each date. Recall from the previous section that Excel stores dates as numbers. You see $1 / 1 / 1948$, but Excel has 17533 (the number of days since January 1, 1900) in its memory. We can apply many different date formats to display this number as a date, such as just the year (yyyy) or the month-year (mmm-yy).

Excel's TEXT function converts numbers to text and this allows us to display the month in each date value. We use mmm as the format code.
$S T E P$ In cell E7 enter the label Month and in cell E8 enter the formula $=T E X T$ (A8, " mmm "). Fill it down.

Excel displays the months for each date value in column A. Notice that it does this to cell A8 also, which is in its raw number form.

We use the same strategy to extract the year.
$S T E P$ In cell F7 enter the label Year and in cell F8 enter the formula $=\operatorname{TEXT}$ (A8, "yyyy"). Fill it down.

Similar to the previous step, Excel displays the year for each date value in column A. As before, it does this to the number in cell A8 also.
$S T E P$ Change cell B7 to SA and D7 to NSA.
We are now ready to compute the average unemployment rate for each month. We could use formulas to do this, but a PivotTable does it in seconds.
$S T E P$ Go to the Insert tab in the Ribbon. Click the PivotTable button in the top left.

Excel displays the Create PivotTable dialog box. It may have pre-populated the Table/Range field, but this is probably wrong.
$S T E P$ In the Table/Range field, select the cell range from A7 to column F and the bottom row of your downloaded data. The range should look like this: Sheet1!\$A\$7:\$F\$915 (although your bottom row may be bigger).
$S T E P$ Click the New Worksheet radio button and click OK.
Excel inserts a new sheet in your workbook. On the right is a contextsensitive area that pops up whenever you are in a PivotTable and an empty PivotTable in columns A, B, and C.

Different versions of Excel have different PivotTable interfaces so you may need to adjust the instructions below. Do not be passive - search the internet or use generative AI (such as ChatGPT) to figure out how to work with PivotTables on your version of Excel.
$S T E P$ You may be able to just click the Month variable listed on the right of your screen or you may have to click and drag down to the Rows area below the listed variables.

Excel adds the Month variable to the PivotTable, creating a list of months in column A.
$S T E P$ Click NSA or click and drag NSA into the Values area.
Excel adds the NSA variable, but we do not want the sum (which is the default). We want the average for each month.
$S T E P$ click on the Sum of NSA in the Values area (bottom left of your screen) and select Value Field Settings. In the dialog box that pops up, select the Average (instead of the default Sum) and click OK.

The average unadjusted unemployment rate (UNRATENSA) for each month is now displayed. This is a one-dimensional cross tabulation (crosstab).

Notice that the values are higher in the winter months, fall, then go up again in June and July, before falling again at the end of the year. This is happening because of seasonality in the unemployment rate.
$S T E P$ Repeat this procedure for $S A$. In other words, add $S A$ to the table and then change it from Sum to Average via the Value Field Settings.

Notice that the SA column (the seasonally adjusted unemployment rate) is much more stable across the months. It has had the seasonal component removed and the data are smoothed.

A chart will make this crystal clear.
$S T E P$ Select the PivotTable data and insert a Line chart (since the x axis is text, this is an appropriate chart) to reproduce Figure 5.10.

The nearly horizontal line shows how the unemployment rate has been smoothed. The squiggly line shows the persistent pattern inherent in the raw, unadjusted data. The unemployment rate is usually high in the winter, then falls, then pops up again in the summer before falling again the rest of the year.

Figure 5.10: Unadjusted and seasonally adjusted monthly average UNRATE.

The Meaning of Seasonal Adjustment

Suppose we used the unadjusted unemployment rate and it was 6.2%, but the month was unknown. We would have a problem correctly interpreting this number. If it was for January, then it seems typical, but if it was for October, we would conclude the economy was struggling because it is higher than usual for October.

Seasonal adjustment solves this problem. If the unemployment rate is seasonally adjusted, we can use it to make a decision for any month. A 6.2% seasonally adjusted rate is not good, no matter the month.

Another way to understand what seasonal adjustment does is to look at the data and compare the two series.
$S T E P$ Return to your data sheet and go to row 785. Look at the Oct, Nov, and Dec values in column B versus D.

The BLS has literally inflated (revised upwards) the values in column D to create the values in column B for those months. This is because historically, unemployment is lower in the fall months when retail sales spike and consumer spending increases.

The raw unemployment rate of 7.5% (which is high) in October 2012 is interpreted as actually even worse than that because it is being artificially lowered by the fact that it is October. The BLS corrects for this and bumps it up.
$S T E P$ Look a few rows down at Jan 2013.
This time, the BLS lowered the unemployment rate. It was 8.5% unadjusted (which is pretty bad), but the BLS and media report it as 8.0%. This is because January unemployment is always higher than usual so we want to remove that component.

Using adjusted data enables us to make a better comparison of any two months. We do not have to worry about the seasonal pattern baked into the data.

Loose Ends

The overall average unemployment rate for the United States since 1948 is around 7.1% and this is much higher than the 4% to 5% magic number for the unemployment rate. What is going on here?

The answer is that the economy is much more likely to be in recession or even depression with high unemployment than it is to be overheated with extremely low unemployment rates.

It is also true that the few times the unemployment rate is too low, it can only go down a few percentage points below 4%. On the other hand, when the economy crashes, the unemployment rate can and has soared into the double-digit territory.

Another issue that you might be wondering about is exactly how the BLS does the seasonal adjustment. This is an advanced topic beyond the scope
of this book. The procedure involves a complicated model. The BLS is transparent about the methodology, which it calls the X-13ARIMA-SEATS Seasonal Adjustment Method, on its website at bls.gov. It would be a challenging and perhaps fun project to replicate the reported adjusted values.

There are many ways to seasonally adjust and different statistical agencies do different things. They are all looking to remove seasonality from data collected at intervals throughout the year.

Discovery

Along with the unemployment rate, labor market experts closely follow the labor force participation rate. Seasonal adjustment is also routinely applied to the LFPR, but do you think it operates the same way? Let's find out.
$S T E P$ Your task is to apply the same steps described above to the LFPR to make a chart like Figure 5.10. You will download both the SA and NSA versions of the LFPR, extract the month (using Excel's TEXT function), and make a PivotTable of the average LFPR for each month (for both SA and NSA). Finally, you will make a Line chart of the two series.

What did you discover-is the seasonal adjustment for LFPR the same or different than the unemployment rate? In what specific ways are they the same or different?

Takeaways

We seasonally adjust variables that vary systematically over the year. For example, construction employment falls in the winter and rises in the summer. Seasonal adjustment would tweak the construction employment numbers higher in the winter and lower in the summer so we can remove the seasonal component and make a better comparison across months.

Seasonal adjustment involves removing the cyclical component of a variable so we get a better reading of what is really going on.

When you hear an unemployment rate in the media, it is almost certainly a seasonally adjusted unemployment rate.

Using seasonally adjusted variables enables better comparison and interpretation.

An Excel PivotTable is a powerful summary tool that enables data exploration and display of relationships in the data.

PivotTables can produce static cross tabs, but they are also a great way to dynamically visualize data. Moving variables around can quickly provide different views of the data.

Constrained Optimization

6.1 Maximizing Utility

Figure 6.1: Computer generated image of cigars and brandies.
Source: https://stablediffusionweb.com/
Prompt: cigars and brandies on a table Date Generated: October 5, 2023

Figure 6.1 shows two things, cigars and brandies, that we will pretend that you enjoy. Economists model the satisfaction and happiness provided by consumption of goods and services by using a utility function.

Your utility function is given by this equation:

$$
U=18 B-3 B^{2}+20 C-C^{2}
$$

Your job is to choose the number of brandies (B) and cigars (C) that maximize your utility (U).

This optimization problem can be solved analytically, with calculus and algebra, but we will use Excel's Solver instead. As you recall, Solver is a numerical approach to finding the optimal solution.

We need to recast the problem in a way that Excel can understand it, then run Solver to find the optimal values of B and C.

The work below assumes that you have done the Lifeguard Problem (an earlier chapter in this book) and remember some of it. If you have not, you can continue working, but you will learn more if you review the Lifeguard Problem before you begin this material.

Implementing the Problem in Excel

Optimization problems always have three parts:

1. Goal (objective function)
2. Endogenous variables
3. Exogenous variables

We know we want to maximize the utility function so that is our goal. It has to be a formula in a cell that depends on other cells in the spreadsheet.

Your endogenous, or choice, variables are B and C. We implement this part of the problem with cells that Solver will use for trial solutions. In the Solver dialog box, these are called the changing cells.

Finally, the exogenous variables are things the decision-maker cannot change. They are part of the environment. In this problem, your exogenous variables are the coefficients $(18,-3,20$, and -1$)$ and exponents in the utility function. We could set up cells for these exogenous variables, but we will keep things simple and just enter the utility function as is.
$S T E P$ Open a blank Excel workbook and save it as UtilityMax.xlsx. In cell A1 enter a 1 and in cell B1 enter the label Brandies. In cell A2 enter a 1 and in cell B2 enter the label Cigars. In cell A4 enter the formula $=18^{*} \mathrm{~A} 1-$ $3^{*} \mathrm{~A} 1^{\wedge} 2+20^{*} \mathrm{~A} 2-\mathrm{A} 2^{\wedge} 2$ and press the enter key.

Excel displays 34 in cell A4 because if you smoke one cigar and sip one brandy, your utility function says that you get 34 utils of satisfaction. Now, there is no such thing as a util, but we will ignore this inconvenient truth.

$S T E P$ Change cell A1 to 2.

Your utility rises to 43 utils. This is an improvement in your happiness, but you do not want to simply improve, you want to maximize utility. What are the best values of B and C, the ones that make utility the largest number possible?

Solving the Problem in Excel

Once we have implemented the problem in Excel, with a formula for the objective function that depends on other cells, we can utilize Solver. It will explore the objective function, trying many solutions. It follows an algorithm, or recipe, when deciding where to move next.

There are many different optimization algorithms. Sometimes, one fails, but another works. Some are good for several different kinds of problems and others are only useful for specific applications. There is no one single algorithm that is better than the others.
$S T E P$ Open the Solver dialog box by clicking the Data tab and clicking Solver. If it is not there, use the keyboard shortcut alt, t, i to bring up the Add-ins Manager and install it. Click in the objective function field, click on cell A4, click in the Changing variable cells field, and select both A1 and A2. Click Solve. Click OK when Excel displays a dialog box reporting that it has found a solution.

Solver's answer is really close to the exact solution, which is to drink 3 brandies and smoke 10 cigars. This yields a utility of 127 . You may not believe it, but you will see below that it is impossible to get utility higher than 127.

Remember that Solver is hunting and pecking, plugging and chugging through many trial solutions. It changes direction when it does worse and continues forward when it is doing better. It stops when it does not improve by very much. Hence, it sometimes gets the exact right answer, but mostly it just gets very close.
$S T E P$ Let's make sure it is clear that Solver's answer is not exactly right by widening column A and displaying more decimal points until you see a few zeroes (click the Increase decimal button repeatedly in Number group in the Home tab).

Your screen should look similar to Figure 6.2. We would never report all of those digits because they are meaningless and exhibit false precision. We interpret Solver's answer as $B^{*}=3$ and $C^{*}=10$ and $U^{*}=127$, which is the correct answer.

	A	B
1	3.00000071	Brandies
2	9.999996396	Cigars
3		
4	126.9999999999850000	Utility

Figure 6.2: Solver results.

Displaying the Optimal Solution

To visualize the optimal solution, we first use a 3D Surface chart. In the next section, we will create a 2D graph since economists and mathematicians often use contour plots to display two-variable optimization problems.

To create a chart in Excel, we need data. The 3D chart requires a specific layout, with the x axis in a row, the y axis in a column, and the z (vertical) axis in the interior of the table.
$S T E P$ In cells D2 to D12, enter 0 to 10 by 1. In cells, E1 to Y1, enter 0 to 20 by 1. These are the two horizontal axes in our 3D plot. In cell E2 enter the formula: $=18^{*} \$ \mathrm{D} 2-3 * \$ \mathrm{D} 2^{\wedge} 2+20^{*} \mathrm{E} \$ 1-\mathrm{E} \$ 1^{\wedge} 2$.

Notice how the $\$$ is being used. We are going to fill this formula down and then right. When we fill it down, it will change the row number for the brandies and continue to use row 1 for the cigars part of the utility function.
$S T E P$ Fill your formula in E2 down and then examine the formulas in cells E3 and E12 to confirm that the row number is changing for column D,
but stays constant at 1 for column E.
$S T E P$ Select cells E2 to E12, then fill right. Examine the formulas in cells Y3 and Y12 to confirm that column D stays constant, but the cigars part of the utility function has changing columns.

Our clever use of the $\$$ has enabled us to create a table that shows how utility varies with changing amounts of brandies (in column D) and cigars (in row 1). The interior of the table displays values of utility.

It is easy to see that the maximum utility value is in cell O5. It is surrounded by lower values. Solver reached the top of this hill by crawling up until it got to the top, at 3 brandies and 10 cigars.
$S T E P$ select cell O5 and make its background color yellow by clicking the bucket icon in the Font group in the Home tab.

We are now ready to create a chart. As you know, there are three steps: 1) Select the data, 2) choose the desired chart type, and, perhaps most important, 3) clean up the chart.
$S T E P$ Select range D1 (notice that this cell is empty, but you need to select it to get all of the rows and columns in the table) to Y12. Click the Insert tab and click Recommended Charts. Click All Charts and click Surface. Click 3-D Surface and click OK.

Excel places a chart that looks like an elongated hill on your spreadsheet. It decided to put cigars (in row 1) on the x axis because it has more cells, but this is not what we want. We need to clean up this chart.

The first thing to do is to put the brandies axis in the front and the cigars on the side.

$S T E P$ Click the Design tab (if needed) and click the Switch Row/Column button.

That looks much better, but we have more cleaning up to do.
$S T E P$ Remove the legend (select it and press the delete key) and add axes titles for each axis. Click the Add Chart Element button and select

Axis Titles. Use Brandies for the Primary Horizontal title, Cigars for the Depth title, and Utility for the Primary Vertical title. Change the chart title field text to Utility Maximization.

It is now really looking like something we would be proud to put our name on, but we can do one final improvement: add more color bands to clearly see that it is a hill.
$S T E P$ Double-click the Utility axis to bring up the Format Axis: Axis Options screen on the right. Change the Major Units field from 50 to 10.

Your chart now looks like Figure 6.3. The crowded numbers on the Utility axis are not great, but the extra color bands make it easy to see that there is a clear top to this surface.

Figure 6.3: A 3D visualization of utility maximization.

Contour Plot

Although a 3D plot like Figure 6.3 is useful, solutions to optimization problems with two endogenous variables often use a 2 D , contour plot that high-
lights the choice variables.

A contour plot, also called a level curve, displays a 3-dimensional surface by graphing constant vertical slices of the surface, called contours, on a 2dimensional chart. It is easier to see what it is than to describe it.
$S T E P$ copy the 3D chart you just made and paste it. In the Design tab, click the Change Chart Type button. Click the Contour Plot type (with the shaded region that signals the use of color) and click $O K$.

Comparing the color bands on the two charts makes clear how they are related. The light blue at the top of the hill in the 3D plot is the light blue oval in the contour plot. The orange band is a little lower on the hill and it is a bigger oval on the contour plot.

It is as if you flew on a plane and looked straight down at the hill. The vertical axis is suppressed on the contour plot, but we could put labels with numbers of the vertical height on each slice. This is exactly what a topographic map does.
$S T E P$ Use your favorite browser to search for "contour plot hiking map". Click on a few hits to see how 2D maps can show elevation by displaying numbers on each contour. If you walked on a specific contour, you would never go up or down.

Contour plots are also used on weather maps. Isobars are contour plots showing the same atmospheric pressure.

Let's clean up Excel's contour chart by improving the title and moving the y axis from right to left.
$S T E P$ Click on the title and make it Utility Maximization: Contour Plot. Double-click the y axis and change the Label Position to High as shown in Figure 6.4.

Figure 6.4: Moving the y axis from right to left.
A final enhancement involves placing a point on the optimal solution and labeling it with a callout box (in the Shapes collection in the Insert tab), as shown in Figure 6.5.

Utility Maximization: Contour Plot

Figure 6.5: A 2D contour plot of utility maximization.

Comparing the 3 D and 2 D visualizations of this utility maximization problem reveals advantages of each. The 3D version makes clear that the surface is a hill with a maximum, but it is difficult to read the optimal number of brandies and cigars.

On the other hand, the 2 D contour plot makes it really easy to see the max and the values of brandies and cigars that will maximize utility. The trick is that you have to know how to read a contour plot and now you do.

Make It Stick

If we used Solver earlier when we did the Lifeguard Problem, why are we doing it again? Repeating material is a learning strategy that has been proven to work.

Suppose you want to improve your free throw shooting and you really cared about this so you decided to practice for one hour per day for two weeks. Most people would think that actually standing at the free throw line and shooting free throws would be the best use of your time, but this is wrong.

A much better use of your one hour per day is to shoot from all over the court - spending 10 minutes in one spot, then moving to another spot, varying distance from say 10 to 20 feet (a free throw is 15 feet from the basket). This is called interleaved practice and it works also for learning!

By doing the Lifeguard Problem, then doing other things and returning to a slightly different optimization problem, you are burying deeper channels in your brain about Solver and optimization.

Every time you repeat something in Excel, especially in the context of a different situation, you get a little better at it. The novelty of the new problem is important so that you are not doing the exact same thing, but you are making connections and learning.

If you want to know more about the neuroscience behind how you learn and other optimal learning strategies, search for Brown, et al.'s 2014 book, Make It Stick.
$S T E P$ watch tiny.cc/howtostudy to see some of these ideas applied to optimal studying.

Takeaways

We revisited work we did earlier, using Solver, Excel's numerical optimization add-in.

Excel's Solver easily found the optimal solution to a simple two-variable utility maximization problem.

Solver applies an iteration procedure and stops when it cannot improve by very much. This produces an answer that is not exactly correct, even though the many decimal places it reports seem like it is giving a really precise answer, a phenomenon common to numerical algorithms known as false precision.

Two Excel chart types were used to visualize the optimal solution: 3D surface and contour plot.

The 2D contour plot is the best-practice way to display the problem because it highlights the two endogenous variables (one on each axis) and makes it easy to see the numerical values of the optimal solution.

Learning also involves optimization, with better and worse ways to use your time. You definitely want to study and learn optimally.

References

The epigraph is from p. 173 of the $7^{\text {th }}$ edition of Robert Heilbroner's The Worldly Philosophers. First published in 1953, this classic tells the story of how economics was born and came to be the mathematical discipline that it is today. It is an easy read and until Freakonomics (by Stephen J. Dubner and Steven Levitt) exploded on the scene in 2009, Heilbroner's Worldly Philosophers had the highest sales of any economics book.

Francis Edgeworth was a key player in the mathematization of economics. Mathematical Psychics, published in 1881, was an early application of optimization and comparative statics.

Brown, P., Roediger III, H., and McDaniel, M. (2014) Make It Stick: The Science of Successful Learning (Belknap Press).

6.2 Constrained Utility Maximization

Your doctor says that you are killing yourself by smoking too many cigars and drinking too much brandy. She restricts your consumption to a total of 5 .

You can have 5 brandies and no cigars or 2, 3 or any other combination that adds up to 5 or fewer. You can choose fractional amounts like one-third brandies and four and two-thirds cigars or 1.5 and 3.5.

You cannot, however, maintain your current daily consumption of 3 and 10. That adds up to 13 and violates the constraint.

Your utility function remains the same:

$$
U=18 B-3 B^{2}+20 C-C^{2}
$$

But we need to add the constraint to properly state this optimization problem. Mathematically, the doctor said that $B+C \leq 5$. Formally, we write the problem like this, where s.t. stands for subject to:

$$
\begin{gathered}
\max _{B, C} U=18 B-3 B^{2}+20 C-C^{2} \\
\text { s.t. } B+C \leq 5
\end{gathered}
$$

You wonder how you are going to solve this problem. It can be done analytically, but you ask yourself if Solver can do it? Yes, of course it can.

As usual, we will have to implement the problem in Excel. Then we can run Solver to find the optimal solution.

Implementing the Problem in Excel

We have the unconstrained version of the problem already set up so we start from there.
$S T E P$ Make a copy of the sheet in your UtilityMax.xlsx workbook by right-clicking the Sheet1 sheet tab in the bottom left, selecting Move or Copy..., checking Create a copy, and clicking OK. Rename the sheet conopt.

The new information that we have to implement is the constraint. It is convenient to rewrite the constraint as $B+C-5 \leq 0$. This way, violations of the constraint occur whenever $B+C-5$ is positive.
$S T E P$ In cell A6, enter the formula $=A 1+A 2-5$. In cell B6, enter the label constraint.

Now we are ready to call Solver. Excel will include the choices you entered before in the Solver dialog box, but we have to add the constraint.
$S T E P$ In the Data tab, click Solver. Confirm that the objective function, max, and changing cells are correct, then click the Add button. From the Add Constraint dialog box, click on cell A6 for the Cell Reference field, choose $l e$, and enter a 0 in the Constraint field. Click OK. Notice that Excel adds the constraint to the Solver dialog box. Click Solve. Excel announces success! Click $O K$.

We interpret Solver's answer as $B^{*}=1$ and $C^{*}=4$ and $U^{*}=79$, which is the correct answer. To maximize utility subject to the constraint of no more than 5 combined units of cigars and brandies, the best combination is 1 brandy and 4 cigars. This yields a utility of 79 and cannot be beat by any other combination of brandies and cigars that does not violate the constraint.

Notice that the constraint cell is not exactly zero, but it is very close to zero. Cell A6 shows something like $5.02825 \mathrm{E}-08$. This is a number expressed in scientific notation and it means 5.02825×10^{-8}. This is a tiny number. You can make it exactly zero if you wish, by changing cells A1 and A2 to 1 and 4 , respectively.

Visualizing the Optimal Solution

Figure 6.6 displays a 3D surface and contour plot of the constrained utility maximization problem. On the 3D surface plot, the constraint is a barrier that blocks attainment of the unconstrained max at the top of the hill. On the contour plot, the constraint is a line because if you look straight down
at the barrier from directly above, you would see just a line.

Figure 6.6: Visualizing constrained utility maximization.
$S T E P$ Make two separate lists of things you like and do not like for the 3D surface plot and the contour plot. See the appendix if you need help, but do not immediately go there. Try to make the lists yourself before looking at the appendix.

One thing that is extremely important about the contour plot is that it clearly reveals the optimal solution. We can use Excel's wire-frame version of the contour plot to see this.
$S T E P$ Copy and paste your contour plot, then click Change Chart Type in the Design tab. Select the Wireframe Contour in the Surface group of charts.

It is now much easier to see the contour lines. Since there is a contour line for every value of utility, there are actually an infinity of contour lines. Your chart shows only a few of them.
$S T E P$ Carefully place a line (use the Line object in the Shapes collection) from the point 0,5 to 5,0 as shown in Figure 6.7.

Constrained Utility Maximization: Wireframe Contour

Figure 6.7: Understanding contour lines with Wireframe chart.

At the optimal solution (at 1, 4), there is a contour slightly above and another below. The curve above has a utility value greater than 79 and the one below is less than 79. There is a curve not shown in Figure 6.7 that is in between the two contours above and below point 1, 4. This contour just touches the constraint line and it has a utility value of exactly 79. This contour is tangent to the diagonal constraint.

A point of tangency means that there is contact at a single point, but no crossing. Figure 6.8 shows why tangency is a visualization of the optimal solution.

If the constraint line cuts or intersects a curve, we immediately know this is not the optimal solution. If we are cutting a contour, we can move along the constraint line to reach a higher contour.

In Figure 6.8, the highest curve $(U>79)$ is beyond our reach. The one that just touches the line is the best we can do. Tangency instantly reveals the solution and explains why the 2D contour plot is used to visualize constrained optimization.

Figure 6.8: Tangency displays the optimal solution.

Takeaways

Excel's Solver add-in can handle constrained optimization. You provide a cell with the constraint and then add the constraint in Solver's dialog box.

There is a conventional graph that is used to visualize constrained optimization problems. It relies on the point of tangency in a contour plot to instantly highlight the solution.

To read a contour plot, remember that it is a top-down view of a 3D surface.
Excel has several 3D surface and contour charts. The chart can be augmented with a variety of drawing objects and text boxes.

Appendix

Figure 6.9 shows a few pros and cons of the two charts. The only con for the contour plot is the prerequisite knowledge needed to read it.

3D Surface		Contour	
Pro	Con	Pro	Con
Clearly a hill	$\mathrm{B}^{*}=1, \mathrm{C}^{*}=4$ unclear	$\mathrm{B}^{*}=1, \mathrm{C}^{*}=4$ clear	Contour prereq
Global max clear	U^{*} unclear	U^{*} clear	
Constraint clear	C axis unclear	Constraint clear	

Figure 6.9: Comparing 3D surface and 2D contour plots.

For those in the know, a 2D contour plot is preferred because of the way the tangency draws attention to the optimal solution. It is easy to see the values that solve the constrained optimization problem.

6.3 Comparative Statics

Your doctor is some kind of evil genius (or an economist) and she wants to explore your response to different values of the total allowed units of cigars and brandies.

This is formally known as comparative statics analysis. We change one exogenous variable and we see what effect it has on the optimal solution.

There's an Excel add-in for that-it is called the Comparative Statics Wizard (CSWiz). After explaining comparative statics in more detail, we will use the CSWiz add-in on the constrained optimization version of the cigars and brandies problem.

The Logic of Comparative Statics

We did comparative statics analysis earlier with the Lifeguard Problem. We turned the lifeguard into a freakish combination of Michael Phelps and Usain Bolt. The optimal solution had us running more since we were so much faster.

We also did comparative statics analysis when we changed the product price facing the farmer. As product price rises, the farmer responds by buying more seed.

A third example involved pooled testing. We lowered the infection rate from 5% to 1% and this made the optimal group size bigger.

All of these examples worked the same way. We solved an optimization problem, then we changed a single exogenous variable and kept everything else the same. We focused on the effect the change had on the optimal solution.

Before we do another example, let's repeat and make crystal clear the logic of comparative statics. It involves a four-step procedure.

1. We set up the problem and find the initial solution.
2. We change a single exogenous variable, called the shock, holding all other exogenous variables constant. We use a Latin phrase, ceteris paribus, as shorthand. This literally means with other things held equal and we use the phrase to mean everything else held constant.
3. We find the new optimal solution.
4. Finally, we compare the new to the initial solution to see how the optimal solution responded to the shock.

Comparative statics is the fundamental methodology of economics. It gives a framework for interpreting observed behavior. This framework has been given many names, including: the method of economics, the economic approach, the economic way of thinking, and economic reasoning.

As you know, comparative clearly points to the comparison between the new and initial solution, the meaning of statics (not be confused with statistics) is less obvious. It means that we are going to focus on positions of rest and not worry about the path of the solution as it moves from the initial to the new point.

We have several ways of comparing the new and initial solutions. A qualitative comparison focuses only on direction (up or down), while quantitative comparisons compute magnitudes of the change in response (either as a difference or a percentage change).

Another Example

We start with the initial constrained optimization problem, which can be formally written like this:

$$
\begin{gathered}
\max _{B, C} U=18 B-3 B^{2}+20 C-C^{2} \\
\text { s.t. } B+C \leq 5
\end{gathered}
$$

We know that the initial solution is $B^{*}=1$ and $C^{*}=4$ and $U^{*}=79$.
Your doctor surprises you at your next appointment. She is happy with your latest test results and says that you can safely have one more brandy or cigar, so your total allowed amount is now 6 . How will you respond to this new
development?
$S T E P$ From your ConOpt sheet in your UtilityMax.xlsx workbook, change the 5 in cell A6 to 6 . What happens?

The constraint cell is now negative. This means that you are below the constraint. The barrier has moved upwards so you have room to climb higher up the utility hill. But what exactly will you do?
$S T E P$ Run Solver. What happens?
With a total of 6 cigars and brandies allowed, your new optimal solution is $B^{*}=1.25$ and $C^{*}=4.75$ yielding a maximum utility of $U^{*}=90.25$

This makes sense. You take advantage of the loosened constraint to sip a little more brandy and smoke more cigars. That is a qualitative or directional statement. It is like saying that when the price goes down, you buy more.

A quantitative or magnitude statement would be to compute how much more you drink and smoke. You went from 1 to 1.25 brandies as the total amount allowed went from 5 to 6 so that increase is 0.25 brandies. The delta (or difference) for cigars is 0.75 since you went from 4 to 4.75 .

There is another way to make a quantitative statement using elasticity. The Comparative Statics Wizard and the results it generates will help us explain how to compute and interpret an elasticity.

The Comparative Statics Wizard

We use a free Excel add-in, CSWiz.xla, to do comparative statics analysis. It works with Solver to find the optimal solution given different values of an exogenous variable.
$S T E P$ Download the CSWiz.xla file from tiny.cc/addin and use the Add-Ins Manager (File \rightarrow Options \rightarrow Add-ins \rightarrow Go or keyboard shortcut alt, t, i) to install it. Once installed, click the $A d d$-ins tab to see that it is under the Wizard group.

To use the CSWiz add-in, we need to modify our Excel implementation of the constrained optimization problem. Instead of hard-coding the total allowed amount of cigars and brandies, we need to make a cell for this exogenous
variable.
$S T E P$ In cell B8 of your ConOpt sheet, enter the label Total. In cell A8, enter the number 5. Connect this total value to the constraint cell in A6 by changing the constraint formula to $=A 1+A 2-A 8$.

We are now ready to run the Comparative Statics Wizard. We will provide information in a series of steps.
$S T E P$ Click the Add-ins tab, click Wizard, and then Comp Statics.
As you walk through the steps, be sure to read carefully and think about the information you are providing. Below is the input you need to give as you walk through the steps.

1. Clicking the Input button produces an input box that asks for the objective function cell. Click on cell A4 and click $O K$. A second box asks for the endogenous variables. Select cells A1 and A2 (both of them) and click $O K$. The final input box asks for the exogenous variables. Click on cell A8 and click $O K$. Usually, there are more than one exogenous variables so you would select all of them. When done, you return to the Wizard dialog box, but your inputs are displayed. Confirm that they are correct and click Next.
2. Click the Run Solver button to call Solver and run it. Solver needs to successfully find the correct solution to continue. If not, we cannot do comparative statics analysis. When done, you return to the Wizard dialog box. Click Next.
3. This step is like the first one in that you are asked three questions. Click the Input button. Click cell A8 because this is the cell that we want to vary to see how the optimal solution responds. Click OK. In the second input box, enter the number 1. This will change cell A8 by 1 . Click $O K$. In the final input box, leave the default choice of 5 . Click $O K$. You return to the Wizard and the results of your input are displayed. Confirm that everything is correct and click Next.
4. The Wizard now has all of the information it needs. Clicking the Run Comparative Statics Analysis button will do just that. Excel will solve the problem for total values from 5 to 10 by 1. The Progress

Bar will advance quickly because this problem is simple and we only asked for 5 shocks. Click Next.
5. Read the message on the final screen and click Finish.

You are taken to a new worksheet in your UtilityMax.xlsx workbook that displays the results of the comparative statics analysis that you just performed. We use these results to figure out and explain how changing the total allowed amount affects the optimal consumption of brandies and cigars.
$S T E P$ we did not name any cells so the results show cell addresses. We can fix this by entering the names of the variables. Cells A5 and A8 are Total. Cells B8, C8, and D8 are Utility ${ }^{*}$, $\mathrm{B}^{* *}$, and $\mathrm{C}^{* *}$, respectively. Widen the columns if needed to display the results neatly.

The results confirm our work for Total $=5$ and 6 , but it extends the comparative statics analysis to total allowed amounts of $7,8,9$, and 10 . Of course, Solver's numbers suffer from false precision, but we know how to interpret them.
$S T E P$ Enter the text $\mathrm{DB} / \mathrm{DTotal}$ in cell E8. In the formula bar, select the first D and change the font to Symbol (in the Home tab). Repeat for the second D.

EXCEL TIP Excel allows you to apply formatting to individual characters in a cell. This means you can use different fonts, colors, and sizes for different parts of a cell.
$S T E P$ In cell E10, enter the formula $=(C 10-C 9) /(A 10-A 9)$ and fill it down.

That is interesting - every time you get an extra total amount allowed, you devote 0.25 of it to brandies (and $3 / 4$ to cigars). In other words, the relationship between optimal brandies and the total amount allowed is linear. We can confirm this with a graph.
$S T E P$ Make a chart of B^{*} as a function of Total.

Figure 6.10: How brandies consumption responds to total allowed.

Your chart should look like Figure 6.10. Notice that we are not displaying an optimal solution. Instead, this chart is tracking how the optimal solution responds to changes in an exogenous variable. This is a common way to present the results of comparative statics analysis.

There is a similar chart of optimal cigars. The relationship is linear, but the slope is bigger so the line is steeper. It would be good practice to compute the slope and make this chart.

Takeaways

People often think that economics is defined by its content. They think that if you study something like unemployment or money, then you are doing economics.

Actually, modern economics is defined by its methodology. Economists use optimization and comparative statics on anything involving choice. Economics can be applied to war, marriage, and many other "non-economic" questions.

You can be sure that optimization and comparative statics will be applied if you ever see a title that begins with "An Economic Analysis of" - this means that whatever is being studied will be analyzed and seen as an optimization problem.

We use comparative statics to interpret changes in behavior (you sipped more brandy when the constraint loosened) and to predict responses (lowering the price will trigger an increase in quantity demanded).

The Comparative Statics Wizard is a numerical approach, as opposed to analytical approaches that use mathematics.

CSWiz.xla is an Excel add-in that takes advantage of Excel's Solver add-in. The user provides information about the problem and which variable is to be shocked. CSWiz does the tedious work of solving the problem at different values of the exogenous variable and keeps track of the optimal solutions.

Once you have the results, further analysis can be performed. Often, we are interested in the relationship between variables and we draw graphs to visualize how an endogenous variable responds to an exogenous shock.

6.4 Elasticity

You probably have heard of the price elasticity of demand, but you may not know what it means or how to use the concept.

Our goal is to truly understand elasticity and be comfortable using it. At its most fundamental level, it is simply a numerical measure of responsiveness.

In the initial version of the Lifeguard Problem, the lifeguard entered the water after running roughly 56 meters. When maximum running speed doubled to $10 \mathrm{~m} / \mathrm{sec}$, ceteris paribus, the optimal solution changed to running almost 80 meters. We can (and did) show this on a graph, but is there a faster way to summarize comparative statics analysis? Yes, in a word, elasticity.

We have been working on a constrained optimization problem where you sipped one brandy and smoked four cigars when the doctor set a limit of 5 total brandies and cigars. When that limit was relaxed and you were allowed a total of 6 units, you chose 1.25 brandies and 4.75 cigars. Again, we can (and did) show this on a graph, but elasticity captures the relationship between the amount consumed and the total allowed in a single number.

We proceed by reviewing a few general ideas about elasticity and what it is trying to convey. Then we move to actual computations and practice interpreting elasticity values.

The more examples you see, the more the concept will stick. Be sure to keep an eye out for the repeated pattern in the elasticity. We always have an optimal solution that is responding to a shock and the elasticity measures if the response is weak or strong.

Elasticity Basics

Elasticity is a pure number (it has no units) that measures the sensitivity or responsiveness of one variable when another changes. Elasticity, responsiveness, and sensitivity are synonyms. An elasticity number expresses the impact one variable has on another. The closer the elasticity is to zero, the more insensitive or inelastic the relationship is between two variables.

Elasticity is often expressed as "the something elasticity of something," like the price elasticity of demand. The first something, the price, is always the exogenous variable; the second something, in this case demand (the amount purchased), is the response or optimal value being tracked.

A less common, but perhaps clearer, way to express the cause and effect is to say, "the elasticity of something with respect to something." The elasticity of demand with respect to price makes it clear that demand depends on and responds to the price.

Unlike the difference between the new and initial values, elasticity is computed as the ratio of percentage changes in the values. The endogenous or response variable always goes in the numerator and the exogenous or shock variable is always in the denominator. Thus, the x elasticity of y is $\frac{\% \Delta y}{\% \Delta x}$.

The percentage change, $\frac{\text { new-initial }}{\text { initial }}$, is the change (or difference), new minus initial, divided by the initial value. This affects the units in the computation. The units in the numerator and denominator of the percentage change cancel and we are left with a percent as the units. If we compute the percentage change in apples from 2 to 3 apples, we get a 50% in increase. The change (or delta), however, is +1 apple.

If we divide one percentage change by another, as we do with an elasticity computation, $\frac{\% \Delta y}{\% \Delta x}$, the percents cancel and we get a unitless number. Thus, elasticity is a pure number with no units. So if the price elasticity of demand for apples is -1.2 , there are no apples, dollars, percents, or any other units. It's just -1.2 .

The -1.2 can be used to compute the percentage change in apples if the price of apples increases by 10%. We simply multiply -1.2 by 10% to get -12%. Or, if the price of apples falls by 20%, we know that the quantity demanded of apples will rise by $24 \%(-1.2 \times-20 \%)$.

We can also use an elasticity to compute the exogenous shock needed to produce a given percentage change in the endogenous variable. If ApplesRUs, Inc knew that the price elasticity of demand for apples was -1.2 and they wanted to increase apples sold by 6%, then they would lower prices by 5% (6% divided by -1.2).

Elasticity is a ratio of percentages changes so there are three numbers involved: the elasticity, the percentage change in the numerator, and the percentage change in the denominator. We are given and use two of the three to find the third one:

1. Given $\% \Delta x$ and $\% \Delta y$, find the elasticity: $\frac{\% \Delta y}{\% \Delta x}$.
2. Given $\% \Delta x$ and elasticity, find the $\% \Delta y$: elasticity $\times \% \Delta x$.
3. Given $\% \Delta y$ and elasticity, find the $\% \Delta x: \frac{\% \Delta y}{\text { elasticity }}$.

The lack of units in an elasticity measure means we can compare wildly different things. No matter the underlying units of the variables, we can put the dimensionless elasticity number on a common yardstick and interpret it.

Figure 6.11 shows the possible values that an elasticity can take, along with the names we give particular values.

Figure 6.11: Elasticity on the number line.

Empirically, elasticities are usually low numbers around one (in absolute value). An elasticity of +2 is extremely responsive or elastic because the response is twice the shock. It means that a 1% increase in the exogenous variable generates a 2% increase in the endogenous variable.

The sign of the elasticity indicates direction (a qualitative statement about the relationship between the two variables). Zero means that there is no relationship - i.e., that the exogenous variable does not influence the response variable at all. Thus, -2 is extremely responsive like +2 , but the variables are inversely related so a 1% increase in the exogenous variable leads to a 2% decrease in the endogenous variable.

One (both positive and negative) is an important marker on the elasticity number line because it tells you if the given percentage change in an exogenous variable results in a smaller percentage change (when the elasticity is less than one), an equal percentage change (elasticity equal to one), or greater percentage change (elasticity greater than one) in the endogenous variable.

The adjective perfectly is used to identify two extreme cases. If the elasticity is zero, it is perfectly inelastic and this means there is no response at all to a shock. This is rare, usually optimal values of endogenous variables adjusts to changes in the environment.

Perfectly elastic means the elasticity measure is infinity (positive or negative). This means that the tiniest little change in an exogenous variable triggers a massive response in the endogenous variable. Again, this is a rare, limiting case for elasticity.

Elasticities can be confusing. There is a lot to remember. Below are six common misconceptions and issues surrounding elasticity. Reading these typical mistakes will help you better understand this fundamental, but easily misinterpreted, concept.

1. Elasticity is about the relationship between two variables, not just the change in one variable. Thus, do not confuse a negative elasticity as meaning that the response variable must decrease. The negative means that the two variables move in opposite directions. So, if the age elasticity of time playing sports is negative, that means both that time playing sports falls as age increases and time playing sports rises as age decreases.
2. Elasticity is a local phenomenon. The elasticity will usually change if we analyze a different initial value of the exogenous variable. Thus, any one measure of elasticity is a local or point value that applies only to the change in the exogenous variable under consideration from that
starting point. You should not think of a price elasticity of demand of -0.6 as applying to an entire demand curve. Instead, it is a statement about the movement in price from one value to another value close by, say $\$ 3.00$ /unit to $\$ 3.01 /$ unit. The price elasticity of demand from $\$ 4.00 /$ unit to $\$ 4.01 /$ unit may be different. There are constant elasticity functions, where the elasticity is the same all along the function, but they are a special case.
3. Elasticity can be calculated for different size changes. To compute the x elasticity of y, we can go from one point to another, $\frac{\% \Delta y}{\% \Delta x}$, but the size of the change in x can vary. The computed elasticity will be different depending on the size of the shock if the relationship is non-linear.
4. Elasticity always puts the response variable in the numerator. Do not confuse the numerator and denominator in the computation. In the x elasticity of y, x is the exogenous or shock variable and y is the endogenous or response variable. Students will often compute the reciprocal of the correct elasticity. Avoid this common mistake by always checking to make sure that the variable in the numerator responds or is driven by the variable in the denominator.
5. Remember that elasticity is unitless. The x elasticity of y of 0.2 is not 20%. It is 0.2 . It means that a 1% increase in x leads to a 0.2% increase in y.
6. Perhaps the single most confusing thing about elasticity is its relationship to the slope: Do not confuse elasticity with slope. This is easy to forget and deserves careful consideration. Remember that elasticity is a percentage change calculation, $\frac{\% \Delta y}{\% \Delta x}$, while a slope is merely the rise over the run, $\frac{\Delta y}{\Delta x}$.

Economists, unlike chemists or physicists, often gloss over the units of variables and results. If we carefully consider the units involved, we can ensure that the difference between the slope and elasticity is crystal clear.

The slope is a quantitative measure in the units of the two variables being compared. If $Q^{*}=\frac{P}{2}$, then the slope, $\frac{\Delta Q^{*}}{\Delta P}=\frac{1}{2}$. This says that an increase in P of $\$ 1$ /unit will lead to an increase in Q^{*} of $\frac{1}{2}$ a unit. Thus, the slope would be measured in units squared per dollar (so that when multiplied by the price, we end up with just units of Q).

Elasticity, on the other hand, is a quantitative measure based on percentage changes and is, therefore, unitless. The P elasticity of $Q^{*}=1$ says that a 1% increase in P leads to a 1% increase in Q^{*}. It does not say anything about the actual, numerical $\$ /$ unit increase in P, but speaks of the percentage increase in P. Elasticity focuses on the percentage change in Q^{*}, not the change in terms of number of units.

Thus, elasticity and slope are two different ways to measure the responsiveness of a variable as another variable changes. Elasticity uses percentage changes, $\frac{\% \Delta y}{\% \Delta x}$, while the slope does not, $\frac{\Delta y}{\Delta x}$. They are two different ways to measure the effect of a shock and confusing them is a common mistake.

Computing Elasticity

When the total allowed B and C went from 5 to 6 , you changed B^{*} from 1 to 1.25 and C^{*} from 4 to 4.75 . We can compute two elasticities with these numbers.

The total allowed elasticity of brandies is

$$
\frac{\% \Delta B^{*}}{\% \Delta T}=\frac{\frac{\Delta B^{*}}{B^{*}}}{\frac{\Delta T}{T}}=\frac{\frac{n e w B-\text { initial } B}{\text { nitial }}}{\frac{n e w T-i n i t i a l}{}\left(\text { nitial }^{\prime}\right.}=\frac{\frac{1.25-1}{1}}{\frac{6-5}{5}}=\frac{0.25}{0.2}=1.25
$$

The total allowed elasticity of brandies is 1.25 because we had a 20% increase in T (from 5 to 6) and this led to a slightly bigger, 25% increase in brandies (from 1 to 1.25). Thus, we say that the brandies response is elastic, or pretty responsive. Figure 6.11 shows that any elasticity greater than 1 in absolute value is said to be elastic.

The total allowed elasticity of cigars is

$$
\frac{\% \Delta C^{*}}{\% \Delta T}=\frac{\frac{\Delta C^{*}}{C^{*}}}{\frac{\Delta T}{T}}=\frac{\frac{\text { newC-initialC }}{\text { initial } C}}{\frac{\text { newT-initial } T}{\text { initial } T}}=\frac{\frac{4.75-4}{4}}{\frac{6-5}{5}}=\frac{0.1875}{0.2}=0.9375
$$

The total allowed elasticity of cigars is 0.9375 because we had a 20% increase in T (from 5 to 6) and this led to a slightly smaller, 18.75% increase in cigars (from 4 to 4.75). Thus, we say that the cigars response is inelastic, or unresponsive. Figure 6.11 shows that any elasticity less than 1 in absolute value is said to be inelastic.

Since we know the slope of the optimal brandies as a function of total allowed is 0.25 and the total allowed elasticity of brandies is 1.25 , that is conclusive proof that elasticity and slope are different. Another way we can show the difference is with a little algebra.

$$
\frac{\% \Delta B^{*}}{\% \Delta T}=\frac{\frac{\Delta B^{*}}{B^{*}}}{\frac{\Delta T}{T}}=\frac{\Delta B^{*}}{B^{*}} \frac{T}{\Delta T}=\frac{\Delta B^{*}}{\Delta T} \frac{T}{B^{*}}
$$

The last term shows we can compute the elasticity by multiplying the slope by $\frac{T}{B^{*}}$. This shows that elasticity is slope times the ratio of the exogenous to the endogenous variable values. In this example, 0.25 times $5 / 1$ is 1.25 .

We can also show that elasticity changes as you change the point from which it is measured.
$S T E P$ In your $C S 1$ sheet, put the label $\% D B / \% D T$ in cell F 8 and then change the two D s to Symbol font. In cell F10, enter the formula $=((C 10-$ $C 9) / C 9) /((A 10-A 9) / A 9)$ and fill it down.

Cell F10 reproduces the 1.25 elasticity we computed earlier, but notice how the elasticities get smaller as T rises. Again, this shows that elasticity is not slope since the slope stays constant while the elasticity changes.

Elasticity Practice

Work on these elasticity computations and questions to improve your understanding. Answers are provided in the appendix (according to step number).
$S T E P$ 1. Compute the max run speed elasticity of distance on sand in the lifeguard problem as max run speed is increased from $5 \mathrm{~m} / \mathrm{sec}$ to 10 $\mathrm{m} / \mathrm{sec}$. Interpret your result.
$S T E P$ 2. Compute the IR (infection rate) elasticity of group size as IR falls from 5% to 2%. Recall that optimal group size rose from 5 to 8 . Interpret your result.
$S T E P$ 3. Compute the slope of $C^{*}=f(T)$ and use it to compute the total allowed elasticity of cigars at $\mathrm{T}=5$. Does your number agree with the 0.9375 value we found earlier?
$S T E P$ 4. Compute the slope of $C^{*}=f(T)$ and the total allowed elasticity of cigars from $\mathrm{T}=9$ to 10 . Does the slope or elasticity change compared to the elasticity from $\mathrm{T}=5$ to 6 ? What does this show?

Figure 6.12: Smoking rates in Japan and the United States.
Source: ourworldindata.org/smoking
Cigarettes have been extensively studied. The average number of cigarettes sold per day in the United States and Japan since 1900 is shown in Figure 6.12.

Visit ourworldindata.org/smoking to see an interactive version of this chart and to add other countries. The pattern is the same around the world - rising smoking rates reach a peak, then they decline. Today, a little over 10% of American adults smoke, down from 40% at the peak.

Governments want to reduce cigarette consumption to improve public health. Banning advertising is common, as is taxing cigarettes. The idea is that increasing the total price consumers must pay (the price plus the tax) will reduce consumption. Whether this works depends on the price elasticity of demand (the quantity purchased).
$S T E P$ 5. To reduce cigarette consumption in response to a tax, what are governments hoping is true about the price elasticity of demand for cigarettes?
$S T E P$ 6. What do you think is a good guess for the price elasticity of demand for cigarettes? Explain your answer.
$S T E P$ 7. How do you think the price elasticity of demand for cigarettes compares between adult and teenage smokers? Explain your answer.

Takeaways

Comparative statics is how economists view the world and elasticity is how they communicate comparative statics results.

You want to be able to interpret and compute it:
Interpret: The closer an elasticity is to zero, the less responsive the endogenous variable is to a particular shock.

Compute: The exogenous variable elasticity of the endogenous variable is always the percentage change in the endogenous variable divided by the percentage change in the exogenous variable.

There are other ways to compute elasticities. The ratio of percentage changes is the simplest, most basic approach.

References

The economics literature on cigarette smoking is vast. Frank A. Sloan, V. Kerry Smith, and Donald H. Taylor, "Information, Addiction, and Bad 'Choices': Lessons from a Century of Cigarettes," Economics Letters, Vol. 77 (2002), pp. 147-155, is an accessible, informative starting point.

For a broader, historical review, see Allan M. Brandt, The Cigarette Century: The Rise, Fall, and Deadly Persistence of the Product That Defined America (2007).

Appendix

1. The max run speed elasticity of distance on sand is 0.43 and this is quite inelastic, or unresponsive. Max run speed was doubled (so 100% increase) and distance on sand did increase, but only by 43%.
2. The IR elasticity of group size is -1 and this is unit elastic. IR fell by 60% (from 5 to 2) and group size rose by 60% (from 5 to 8). The minus sign means the two variables are inversely related.
3. The slope of $C^{*}=f(T)$ is $3 / 4$, so multiplying this by $5 / 4$ is $15 / 16$ which does agree with the 0.9375 value in the text.
4. The slope of $C^{*}=f(T)$ stays constant at 0.75 , but the elasticity increases from 0.9375 to roughly 0.9643 . This shows that elasticity is a local phenomenon that changes depending on the value of the exogenous variable at which it is computed.
5. Governments hope that the cigarette demand is elastic, meaning that the price elasticity of demand is high. This way, small increases in taxes will produce big decreases in cigarette consumption.
6. Many studies have produced a variety of results, but the price elasticity of demand for cigarettes is expected to be inelastic, so less than one in absolute value. A good guess would be -0.6 .
7. Teenage smokers are more price sensitive since they are not as addicted yet and typically have lower incomes than adults. If adults are at -0.6 , teenagers might be at -1.4 .

6.5 Cost Minimization

You are on the factory floor of a manufacturing business. The CEO calls and says, "We need to make 300 units today."

Your production function is simple: $Q=\sqrt{L}+\sqrt{K}$, where L is the amount of labor hours and K is the number of machines. You get to choose how much L and K to use, but you must produce 300 units.

You could, for example, use 90,000 hours of labor and no machines or 40,000 machines and 10,000 hours of labor. There are many other combinations of L and K that would meet the required quantity of output (q).

You have to pay for the inputs. The wage rate (w) is $\$ 20$ per hour and the rental rate of machines (r) is $\$ 40$ per machine.

Your goal is to find the L and K that minimize $T C$ (total costs of production). Formally, your constrained optimization problem looks like this:

$$
\begin{aligned}
& \min _{L, K} T C=20 L+40 K \\
& \text { s.t. } \sqrt{L}+\sqrt{K}=300
\end{aligned}
$$

Implementing the Problem in Excel

You know that optimization problems always have three parts:

1. Goal (objective function) \rightarrow min $T C$.
2. Endogenous variables $\rightarrow L, K$.
3. Exogenous variables $\rightarrow w, r, q$, and the function, $\sqrt{L}+\sqrt{K}=q$.

We will organize our spreadsheet with these parts, but first we want to visualize the problem.
$S T E P$ In cell A1 enter the label L and in cell B1 enter the label K. In cells A2 to A20 enter numbers 0 to 90000 by 5000 . In cell B2 enter the formula $=(300-S Q R T(A 2))^{\wedge} 2$ and fill it down. Finally, make a Scatter chart of the data in cells A1:B20.

Your chart is displaying an isoquant. Since the prefix iso means equal (like an isosceles triangle), an isoquant shows all of the combinations of L and K that make the same amount of output.

There are many isoquants, one for each level of output. Your chart shows the isoquant for 300 units of output. It is the constraint for this optimization problem. The solution is on the isoquant, but we do not know which combination of L and K is the least expensive.
$S T E P$ Add a point on the chart and a scrollbar on the sheet to visualize that you can choose any combination on the isoquant. See the appendix if you need help.

So how do we find the cheapest combination of L and K that produces 300 units of output? With Solver, of course, but first we have to implement the problem in the spreadsheet.
$S T E P$ Label cells N1 and N2 as L and K, respectively. Cells N4, N5, and N6 have labels w, r, and q. Cell N8 is TC and N10 is the constraint. In cells M4, M5, and M6 enter the exogenous variable values. In cell M8 and M10 enter formulas. See the appendix if you need help.

Now you are ready to run Solver.
$S T E P$ Properly configure Solver and run it to find the optimal solution. See the appendix if you need help.

Solver should find a solution close to the exact answer of $L^{*}=40,000$ and $K^{*}=10,000$ with a $T C^{*}=\$ 1,200,000$. This solution makes sense since L and K are equally productive, but capital is twice as expensive as labor.

We can see that this solution is correct by computing the total cost of the points on the isoquant in columns A and B.
$S T E P$ In cell C 1 enter the label TC. In cell C 2 enter the formula $=20^{*} A 2+40^{*} B 2$ and fill it down.

It is easy to see that the cheapest way to make 300 units of output is the 40,000 and 10,000 combination.

Visualizing the Optimal Solution

Recall that the cigars and brandies utility maximization problems was visualized with a tangency condition between the utility contours and the constraint. Does the same apply here? Yes, it does.

We first create 3D surface and 2D contour plots of the total cost function, then we can draw a graph of the optimal solution.
$S T E P$ copy cells A2:A20, insert a new sheet in your workbook, select cell A2 and paste. Select cell B1 and paste transpose (click the Paste down arrow and select the Transpose icon as shown in Figure 6.13). Enter a formula that computes the total cost for the given labor in column A and capital in column B. See the appendix if you need help. Make 3D Surface and 2D contour plots.

Figure 6.13: Paste transpose.

The surface is like a sheet of paper and the contours are straight lines. Each contour is called an isocost because it represents combinations of L and K with the same cost.
$S T E P$ Use Excel's Shapes group of drawing objects to add straight lines to your isoquant chart. Your lines must have a slope of 0.5 because w / r is $20 / 40$. The lowest feasible isocost is a line with K-intercept of 30,000 and L-intercept of 60,000 . All of your isocost lines must be parallel.

Figure 6.14 shows a visualization of the optimal solution. The curve is the constraint and the lines are isocosts. You want to be on the lowest isocost on the constraint.

Figure 6.14: Visualizing the optimal solution.

There are many more isocost lines than the three shown. The point on the isoquant and the highest isocost is feasible in that you could make 300 units with this combination of L and K, but you would not be minimizing costs. The lowest isocost has lower costs than optimal solution (40,000 hours of labor and 10,000 machines), but since it is below the isoquant, it violates the constraint and no combination of inputs on that isocost is an eligible solution.
$S T E P$ Return to your chart and make sure you have an isocost line that is tangent to the isoquant at the optimal solution. Add a red dot (use Excel's Shapes objects again) at point $L=40,000$ and $K=10,000$ (as shown in Figure 6.14). Finally, improve Figure 6.14. What is it missing? See the appendix if needed.

Comparative Statics

We finish this problem by considering what would happen if the CEO called and changed the needed output level. We will compute the output elasticity of total cost.
$S T E P$ Use the Comparative Statics Wizard to explore how the optimal solution changes as you vary q from 300 to 400 by 10 . Make a chart of the minimum total cost as a function of quantity.

You have a made a graph of the cost function. This tells us how costs of production vary as output changes.
$S T E P$ Use your CSWiz results to compute the slope of the cost function and the output elasticity of total cost as q rises by 10 .

The slope of the cost function is rising slowly as quantity increases which agrees with the shape of your cost function (it is increasing at an increasing rate). The output elasticity of total cost is decreasing as quantity goes up, but very slightly. Of more importance is its value of a little over 2-this means that total cost is quite responsive to output in this example.

Takeaways

Input cost minimization is a constrained optimization problem where we are asked to find the cheapest way to produce a given output.

Solver can do this problem and the Comparative Statics Wizard can be used to explore how the optimal solution changes as quantity changes.

The optimal solution is visualized as a tangency between the isoquant and isocost lines.

Notice how many other concepts and skills were repeated as you worked through this problem. Once you get the pattern, it is easier to understand other applications.

Appendix

To add controls to a spreadsheet, the Developer tab needs to be visible on the Ribbon. If it is not, click File, then click Options, then click Customize

Ribbon, and check the Developer item.
$S T E P$ copy cell range A2:B2 and paste it below your chart. To add this one point to your chart, copying, pasting, and editing the SERIES formula is an easy way to do this. You need to replace the x - and y-axis arguments in the pasted SERIES formula with the cell that has the x-axis value and the cell that has the y-axis value.

Next, we add the scrollbar control, but it has a maximum value of 30,000 so, as a simple workaround, we can connect the scrollbar to a different cell, say the cell below the 0 value and then change the 0 value cell to 10 times the cell below it. The scrollbar maximum should be set to 9000 .
$S T E P$ click the Developer tab on the Ribbon, click the down arrow in the Insert button, and select the scrollbar icon (in the top, form control group). Click and drag on the spreadsheet (roughly under the chart) to create the scrollbar control and link it the appropriate cell on your spreadsheet.

To use Solver to find the cost minimizing combination of L and K, cells M4, M5, and M6 are 20, 40, and 300. Cell M8 has formula $=M 4{ }^{*} M 1+M 5{ }^{*} M 2$ and should be formatted as $\$$. The constraint is in cell M10 with the formula $=S Q R T(M 1)+S Q R T(M 2)-M 6$.

For Solver, the objective function is M8, the Min radio button should be checked, and the changing cells are M1 and M2. The constraint should be that $\mathrm{M} 10=0$.

The formula in cell B 2 needed to make a 3 D chart is $=20 * \$ A 2+40 * B \$ 1$. Format as $\$$ with no decimals and fill down and right.

Figure 6.14 can be improved by adding an appropriate title and labeling the axes.

Yield Curve

7.1 Bond Basics

It is January 1, 2030. You give XYZ, Inc. $\$ 1,000$ today and they promise to pay you back in two years. Congratulations, you just bought a bond!

The $\$ 1,000$ is called the face or par value and the maturity date is two years from now, January 1, 2032 (when you get the face value back). Not surprisingly, you own a 2 -year bond.

Of course, you must be compensated for the time value of money - $\$ 1,000$ two years from now is worth less than $\$ 1,000$ right now. So, XYZ also promises to pay you interest at regular intervals, say every six months. The coupon rate, say 5%, tells you the interest you will be paid in a year. Five percent of $\$ 1,000$ is $\$ 50$ so you will get two payments of $\$ 25$.

Because the coupon (interest) and final payments are on a strict schedule, bonds are called fixed-income securities. Bonds are debt and they give investors a safer, but lower return, on average, than stocks which are equity (since they involve ownership of a corporation).

The jargon, special words or technical language used by professionals, can make financial products and choices difficult to understand. We can make your bond come to life with Excel. As you enter the information, think about the trade-off involved here - the lender (you) gives up money now in return for future payments from the borrower (XYZ). This is the core idea.
$S T E P$ Open a blank Excel workbook and save it as YieldCurve.xlsx. In cells A1 to A5, enter the dates 1/1/2030, 7/1/2030, 1/1/2031, 7/1/2031, and $1 / 1 / 2032$. In cell B1, enter - $\$ 1000$, this is the amount you invested in the bond (hence the minus sign). Cells B2, B3, and B4 represent the coupon payments so enter $\$ 25$ for each of those cells. At the end, you get the last interest payment plus the face value back, so cell B5 is $\$ 1,025$.

Your spreadsheet now looks quite familiar, given the work we did on present value and the internal rate of return (IRR). That's right, a bond is just another application of those ideas. You start with a negative number that represents your investment, then get a stream of income over time that is your return on investment.

The IRR is a measure of the quality of an investment, the bigger it is the better the investment. We can compute the IRR for these cash flows at these dates using Excel's $X I R R$ function. It incorporates the dates at which the flows are paid and received and returns the annualized internal rate of return.
$S T E P$ Enter the formula $=\operatorname{XIRR}(B 1: B 5, A 1: A 5)$ in cell C 1 and format it as a $\%$ with two decimal places. In cell D1 enter the label $I R R=Y T M$ so that your spreadsheet replicates Figure 7.1.

	A	B	C	D
1	$1 / 1 / 2030$	$(\$ 1,000)$	5.06%	IRR = YTM
2	$7 / 1 / 2030$	$\$ 25$		
3	$1 / 1 / 2031$	$\$ 25$		
4	$7 / 1 / 2031$	$\$ 25$		
5	$1 / 1 / 2032$	$\$ 1,025$		

Figure 7.1: Understanding a bond.
The IRR is a little over 5% because you received the annual interest payment of $\$ 50$ a little ahead of time: $\$ 25$ halfway through the year and another $\$ 25$ at the end of the year instead of all $\$ 50$ at the end of the year.
$S T E P$ Confirm this by changing cells B2 and B4 to zero, cell B3 to $\$ 50$, and cell B5 to $\$ 1,050$.

Cell C1 now shows the IRR as 5.00%. This shows that the XIRR function is working as advertised. It also shows that the timing of the coupon payments is critical. Your spreadsheet is now displaying a different bond than the one in Figure 7.1. The IRR of the bond in Figure 7.1 is higher than the one on your spreadsheet because of the timing of the interest payments.

The IRR for a bond is called the yield to maturity, YTM. It is calculated as if the investor will hold the bond until the maturity date. But they might not. Bonds can be traded before they mature in the secondary market.

A zero-coupon bond, also called a strip, is just what it says, it has no interest payments.
$S T E P$ change the $\$ 25$ value in cell B3 to zero (so the values in cells $\mathrm{B} 2, \mathrm{~B} 3$, and B 4 are all zero) and make cell B5 $\$ 1,000$.

The YTM is now zero. That's terrible. No investor would buy this bond. To entice buyers, the issuer must sell the bond at a discount (or below par).
$S T E P$ Change cell B1 to - $\$ 900$.
That's better. Now the YTM is about 5.4%. Investors are compensated for lending $\$ 900$ today by getting the face value of the bond, $\$ 1000$, in two years. Someone might be willing to buy this bond and lend the issuer $\$ 900$.

Bonds are complex financial assets. They have many variations and the jargon is intimidating, but no matter how complicated it gets, the idea is that a bond is a promise - money in the future is promised in return for money now.

Yield Data

With a basic understanding of a bond and how it works, we can get yield data and create visualizations, including that of our ultimate goal, the yield curve over time.

We will work with United States Treasury securities with different maturity dates. They all work like bonds, but they have different names depending on their maturity dates: Treasury bills mature in one year or less, Treasury notes in two to ten years, and Treasury bonds in 20 or 30 years.

First, we will examine a single security over time, but our eventual goal is to visualize a richer data set with yields for different maturities over time. This will give us the yield curve.
$S T E P$ Insert a sheet in your workbook, rename it GS1, and enter the Series ID GS1 (for government security maturing in 1 year) in cell A1. Use the FRED Excel add-in to get the data. Use FRED's charting tools to make a chart with recession shading, like Figure 7.2 (made in October 2023). Refer back to the work we did using FRED to get unemployment data if needed.

Figure 7.2 shows the yield on a 1-year United States Treasury bill on a monthly frequency from April 1953 to September 2023. Your spreadsheet will have this series up to the previous month in which you created it.

Figure 7.2: 1-year US Treasury bill yield over time.

Unlike the unemployment rate which rose in every recession, 1-year US Treasury bill yields are mostly falling when they enter the shaded bars. This is because the government is actively trying to use monetary policy to lower interest rates to stimulate the economy.

The US Federal Reserve (Fed) acts as a central bank and influences many different interest rates, including bond yields, by controlling the federal funds rate (the interest rate at which banks lend reserves to each other).

The key point for our yield data is that 1-year US Treasury bill yields are not directly controlled by the Fed. They are the outcome of supply and demand. Bonds, including US Treasury securities, can be traded before their maturity dates. It is the bond market that determines yields.

It is easy to see in Figure 7.2 that in the early 1980s, yields were very high, in double-digit territory. Why? Certainly a contributing factor was high inflation at that time. The yield had to be high to entice the lender to part with money now to be paid back later.
$S T E P$ Return to your bond demonstration sheet. You should see the zero-coupon bond. You part with $\$ 900$ now and get $\$ 1,000$ in two years, which has a YTM of about 5.4%.

In the early 1980s, there is no way you would give anyone (XYZ or the US government) $\$ 900$ now in return for $\$ 1,000$ in two years. The $\$ 1,000$ you got back two years later would be so watered down by the high inflation at that time that you would refuse that deal. So, the issuer has to raise the yield by lowering (discounting) the bond by more than $\$ 100$.
$S T E P$ Change cell B1 to - $\$ 800$. What happens?
Not surprisingly, the YTM increases to almost 12%. Is that enough to get you to make the trade? Not in August 1981.
$S T E P$ Return to the GS1 sheet. Enter the formula $=\operatorname{MAX}(B: B)$ in cell C 8 to see the highest yield in the data set. Scroll down to find when it occurred.

In August 1981, the market, or equilibrium, yield was 16.7%. You would not lend unless you got that yield just like you would not buy apples from a particular seller if their price was higher than the market price that many other sellers were selling apples for.
$S T E P$ Return to the sheet with the simple 2-year bond we were playing with and use Solver to find the discount in the bond price needed to produce a yield of 16.7%. Be sure to uncheck (if needed) Solver's Make unconstrained variables nonnegative option since we want a negative number in cell B1.

You should find that the bond price is roughly $\$ 734$ so a discount of $\$ 266$ from the par value.

The inverse relationship between the yield and the bond price is a fundamental concept in the bond world. The Excel implementation of a bond makes it easy to see: the lower the price (the bigger the discount) in cell B1, the higher the yield.

Yields for Different Maturities

Just like GS1, the yield on a 1-year US Treasury bill, FRED has data for yields on US Treasury securities with different maturities, also known as the term structure. We will get data on US Treasuries from 3-month to 30-year terms.
$S T E P$ Insert a sheet in your workbook and name it TermStructure. In individual cells in the top row, enter the following Series IDs: GS3M, GS6M, GS1, GS2, GS3. GS5, GS7, GS10, GS20, and GS30. The M stands for months and the numbers indicate the length of time. So, GS6M is a 6 -month US Treasury bill and GS20 is 20 -year Treasury bond. Click the Get FRED Data button.

The series start at different dates. We need to find the latest date and start them all from that point so that we can see how the yields varied by maturity on the same date.
$S T E P$ The latest starting date in row 8 is $9 / 1 / 1981$. Copy this cell and paste it in cells E4, G4, and so on until S4. Update the data.

Each row has yields for differing maturities of US Treasury securities for a particular point in time. Thus, each row has the data for the yield curve for that month.

Here is how the Fed describes the yield curve:
Investors can trade Treasury securities freely between issuance and maturity. As the market price of Treasury securities varies over time, so does their implied yield - their return relative to their price. At any given time, there is a wide range of Treasury securities with different maturities outstanding. Market forces tend to ensure that the yields on securities with similar maturities are not dramatically different from each other. This feature makes it possible to summarize the information contained in the cross section of market-implied yields by a smooth curve of yield as a function of maturity - the yield curve.
https://www.federalreserve.gov/data/nominal-yield-curve.htm
Thus, the yield curve shows yield by maturity. Let's make one.
$S T E P$ Copy the TermStructure sheet and rename it YieldCurve. Change each of the value labels in row 7 to the corresponding length of time in years. Cell B7 is 0.25 (you may have to increase the decimal places displayed), cell D7 is 0.5 , cell F7 is 1 , and so on. Delete rows 1 to 6 . Delete the date columns, starting with column C (so, C, E, to S). Finally, select the yield data (from B2 to the last row in column K) and display two decimals places.

You now have a data set that looks like Figure 7.3. It has dates in column A, lengths of maturity in years in row 1 , and yields for each month by maturity. These are the inputs needed to make a yield curve.

| A | B | C | D | E | F | G | H | I | J | K | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | date | 0.25 | 0.5 | 1 | 2 | 3 | 5 | 7 | 10 | 20 | 30 |
| 2 | $09 / 01 / 1981$ | 15.61 | 16.36 | 16.52 | 16.46 | 16.22 | 15.93 | 15.65 | 15.32 | 15.07 | 14.67 |
| 3 | $10 / 01 / 1981$ | 14.23 | 15.06 | 15.38 | 15.54 | 15.50 | 15.41 | 15.33 | 15.15 | 15.13 | 14.68 |
| 4 | $11 / 01 / 1981$ | 11.35 | 12.12 | 12.41 | 12.88 | 13.11 | 13.38 | 13.42 | 13.39 | 13.56 | 13.35 |
| 5 | $12 / 01 / 1981$ | 11.32 | 12.44 | 12.85 | 13.29 | 13.66 | 13.60 | 13.62 | 13.72 | 13.73 | 13.45 |

Figure 7.3: Data to make a yield curve.
$S T E P$ Select cells A1:K2 and insert a Scatter with Straight Lines and Markers chart. Add a title, Yield Curve and label the axes, Yield (\%) and Maturity (years).

You just made your first yield curve. It is not common. Usually, it is upward sloping. The longer the maturity, the higher the yield because lenders have to be rewarded for locking up their money for longer periods of time.

The 1980s were certainly exceptional economic times. The yield curve was inverted because yields for shorter maturities were higher than for longer maturities. This usually means bad tidings for the economy.

There is another step we could take to make our yield curve a true curve: we could fit a smooth curve to the data. The smoothed curve version of yield as a function of maturity is what most people call a yield curve. There are many ways to fit such a curve and it gets complicated so we will stay with our rudimentary version that connects the data with straight lines.

We can easily make another yield curve so we can understand what the yield curve is telling us. We work smart by using the edit SERIES formula approach.

$S T E P$ Copy and paste the chart. Click on the data and edit the SE-

 RIES formula by changing the 2 to 222 in the y-axis part of the formula, YieldCurve!\$B\$222:\$K\$222.You just produced a yield curve for January 2000. Unlike September 1981, it rises fast, then stretches out. Figure 7.4 compares the two yield curves.

While the slightly lower yield for 30 versus 20 years is unexpected, the Jan 2000 yield curve (on the right) is a typical yield curve. As the yield to maturity rise from very short term to 2 years, yields rise quickly, but then they rise much more slowly as maturity increases.

Figure 7.4: Sep-1981 (left) and Jan 2000 (right) yield curves.

We learned about bonds and yields, got yield data, and created yield curve charts. Next up, we work on fancier visualizations of yield curve data.

Takeaways

In everyday English, a bond is a connection between people (a bond of friendship) or objects (to bond is to glue things together). In finance, the connection is between lender and borrower.

A bond is a security in which a borrower (e.g., a firm or government) promises to pay back the face value at the maturity date and make interest payments at specific dates (to compensate the lender for the time value of money).

Unlike the two-year bond we implemented in Excel, most bonds are on a 30/360 calendar and have a high threshold of legalese, like this example:
(1) Interest. Ventas Realty, Limited Partnership (the "Issuer") promises to pay interest on the principal amount of this Note at 4.125% per annum from July 16, 2015 until maturity. The Issuer will pay interest semi-annually in arrears on January 15 and July 15 of each year, or if any such day is not a Business Day, on the next succeeding Business Day (each, an "Interest Payment Date"). Interest on the Notes will accrue from the most recent date to which interest has been paid or, if no interest has been paid, from July 16, 2015; provided, that if there is
no existing Default in the payment of interest, and if this Note is authenticated between a record date referred to on the face hereof and the next succeeding Interest Payment Date, interest shall accrue from such next succeeding Interest Payment Date; provided, further, that the first Interest Payment Date shall be January 15, 2016. The Issuer will pay interest (including postpetition interest in any proceeding under any Bankruptcy Law) on overdue principal and premium, if any, from time to time on demand at a rate that is 1% per annum in excess of the rate then in effect; the Issuer will pay interest (including post-petition interest in any proceeding under any Bankruptcy Law) on overdue installments of interest (without regard to any applicable grace periods) from time to time on demand at the same rate to the extent lawful. Interest will be computed on the basis of a 360 -day year of twelve 30-day months.

Source: EDGAR filing at the Securities and Exchange Commission website: www.sec.gov/Archives/edgar/data/740260/000110465915051467/a15-14953_11ex4d2.htm

A bond is a way for borrowers to raise money. Firms often use bonds to fund operations, while government bonds pay for deficit spending (when outlays are greater than tax revenues).

The funds raised by issuing bonds are debt because the issuer has to pay the lenders back, just like they would pay back a bank loan.

The jargon in the bond world is intense. Knowing things like the difference between the coupon rate and the yield to maturity is critical for those who live in the bond world.

It is important to understand the contract is iron-clad so the coupon rate and promised cash flows do not change as interest rates change. You might buy a bond in the secondary market above or below par value so the spot rate (the IRR at the time you buy the bond) does change.

Higher interest rates produce lower bond prices. This fundamental law of bonds is easiest to see in a strip because there are no interest payments. The bond price will always be lower than the face value, but as the bond price (the amount you pay to buy the bond) gets farther from the face value (the amount you get at maturity), the higher the yield.
"The U.S. Treasury yield curve is of tremendous importance both in concept and in practice. From a conceptual perspective, the yield curve determines the value that investors place today on nominal payments at all future dates - a fundamental determinant of almost all asset prices and economic decisions" (Gürkaynak, et al., 2006, p. 1).

References

The epigraph is from p. 8 of Geneva Smitherman's Black Talk: Words and Phrases from the Hood to the Amen Corner, Houghton Mifflin (1994). Here is the full entry for Word is born!:

An affirmative response to statement or action. Also, Word!, Word up!, Word to the mother! A resurfacing of an old, familiar saying in the Black Oral Tradition, "Yo word is yo bond," which was popularized by the five percent nation in its early years. Word is born! reaffirms strong belief in the power of the word, and thus the value of verbal commitment. One's word is the guarantee, the warranty, the bond, that whatever was promised will actually occur. Born is the result of the AAE [African American English] pronunciation of "bond"; see Introduction.

The yield data in FRED are produced by the Fed and it is a complicated process. A good source for digging into the details is Refet S. Gürkaynak, Brian Sack and Jonathan H. Wright (2006) "The U.S. Treasury Yield Curve: 1961 to the Present," Finance and Economics Discussion Series, Divisions of Research \& Statistics and Monetary Affairs, Federal Reserve Board, Washington, D.C.

7.2 Yield Curve Visualizations

We begin our visualizations of the yield curve with a clever way to easily control which month-year yield curve to display. Our strategy will be to use a Combo Box form control to enable the user to select a date. The selected month-year will be connected to a cell in the sheet which we will use to get the yields via the OFFSET function. Finally, we will tie the chart to the selected yields by directly editing the SERIES formula. This will all make more sense as we actually do it.
$S T E P$ with yield curve data in columns B through K , dates in column A, and labels in row 1, click the Developer tab, then the Insert group, and select the Combo Box form control as shown in Figure 7.5. Click on the spreadsheet under your yield curve chart and drag to place the control on the sheet. Right-click the control and choose Format Control. For the Input range, select from cell A2 to the last row with data in column A. For the Cell link, select cell M1.

Figure 7.5: Selecting the ComboBox control.

It does not look like we have done anything, but we have. Our Combo Box is loaded with the dates in column A.
$S T E P$ Click on any cell in the sheet so that the Combo Box is not selected and then click the Combo Box control. Select any date.

Cell M1 now shows the row number of the date you selected. Next, we get the yield data for the chosen date.
$S T E P$ Enter the formula $=\operatorname{OFFSET}(\mathrm{A} 1, \$ \mathrm{M} \$ 1,0)$ in cell N1.
Excel displays the date for that row. The OFFSET function works by taking you to cell A1 and then going down however many rows are in cell M1 while staying in column A (that is what the zero says to do).
$S T E P$ Change cell M1 to 10. What happens?
Not only does the date change in cell N 1 to the date in cell A10, but notice that the Combo Box control has also changed. Cell M1 is connected to the Combo Box so you can use the Combo Box to set cell M1's value or do the reverse and set the Combo Box's value by entering a number in cell M1.
$S T E P$ Select cell N1 and fill it right to cell X 1.
Now you are displaying the yields for each maturity for that month-year. This means all we have to do is edit the chart's SERIES formula to display the yields in cells O1:X1.
$S T E P$ click a point on the yield curve to see the SERIES formula in the formula bar. Remove the legend text and edit the y-axis so that the SERIES formula is: $=S E R I E S($, YieldCurve!\$B\$1:\$K\$1, YieldCurve!\$O\$1:\$X\$1,1).

We are ready to test our dynamic visualization of the yield curve.
$S T E P$ click the Combo Box control and pick a date.
The chart immediately updates and shows you the yield curve for that date! The Combo Box control is an effective way to get user input.
$S T E P$ Use the Combo Box control to display yield curves from several dates. Try one from each decade. Definitely visualize the last row so you can see the current state of the yield curve.

If you play around a bit, you will see that the yield curve is usually upward sloping, but there are a variety of shapes. Inversion is when yields for longer maturities are lower than for shorter maturities. This does happen, but it is not the usual shape of the yield curve. Before we discuss the interpretation of inversion, we will do some 3D visualizations.

3D Viz in Excel

What if we visualized all of the month-year yield curves at once, in one chart? The yield would be the vertical axis in a 3D plot, with time and the maturities as the two horizontal axes.
$S T E P$ Delete the date text from cell A1 (the top-left corner of the data must be an empty cell). Select from cell A1 to the last row in column K. Click Insert, Recommended Charts, and select 3D Surface.

Excel puts a chart on your spreadsheet, but it certainly needs some cleaning up. Below are the steps to produce Figure 7.6.

Figure 7.6: 3D Surface Excel chart of the yield curve.
$S T E P$ Make the title Yield Curve over Time and delete the legend.
The problem with the chart on your screen is that the time axis (near the front) is long and the maturity axis is too narrow. This is because there are many more rows than columns. We need to widen the maturity axis.
$S T E P$ Right-click the surface and select 3-D Rotation.... Repeatedly click the up arrow in the Depth (\% of base) setting until you start to see the maturity axis start to widen. You can go up to 2,000 so directly enter this value.

Your chart should now look like Figure 7.6. It still needs more work. The maturity axis labels are unclear and there are too many dates displayed. The vertical axis needs a label and the way it is angled is not helpful. We will not bother trying to fix these issues because there is a big problem with Excel's charting interface: rotation is clumsy.

Excel provides X, Y, and Z rotation controls and you can try them, but they are difficult to work with. We want to be able to easily spin the chart with the cursor. To do this, we will use Python.

3D Viz in Python

Python is "an interpreted, object-oriented, high-level programming language with dynamic semantics" www.python.org/doc/essays/blurb/). That sounds complicated, but do not worry, Python is really easy to access and use. It is open-source (free) and its many users provide a strong support system.

As of this writing, generative AI (especially ChatGPT) can be used to write effective Python code.

Although you can download and install it on your personal device, we will use an even simpler approach, Google's Colab environment.
$S T E P$ click this link, colab.research.google.com, or enter it into your favorite browser. If needed, login to Google when prompted. Click on the Welcome to Colaboratory link and read it.

The Colab notebook that you read is composed of executable and text cells. Across the top of the Colab screen are the usual menu items and on the left is a table of contents with the sections in the notebook.

The yield data in the YieldCurve.xlsx workbook were uploaded to Google drive. A few lines of Python code create a 3D plot that is easy to rotate and spin.
$S T E P$ Click this link, tiny.cc/3DVizYieldCurve, or enter it into your favorite browser to see a Colab notebook that creates a 3D visualization of the data. Follow the instructions to spin the plot.

Figure 7.7 shows the Python visualization of the yield curve over time. Of course, the online version is live in the sense that you can spin it and use the cursor to get values at specific points on the surface.

Figure 7.7: 3D chart in Python.

Yield Curve Meaning

Our yield curve visualizations are certainly eye-catching, but what does the yield curve actually tell us? There are several ways to answer this question, but the most important use of the yield curve is as the market's expectation of future economic performance.

Before we dig into how the yield curve can be used as a predictor, consider this: you follow a sports team that is expected to be really good this year, but they have aging stars at key positions. Then the betting odds of your team winning a championship would be higher for this season than a few years from now.

Conversely, if your team was bad now, but had young players who could develop into superstars, their odds of winning in future years are higher than now.

You can stretch the time horizon even farther and think about odds a decade or longer from now. For so far into the future, all of the teams would have
similar odds (almost none of the current players would be active) unless there is some reason to believe that the ownership or management of a team is especially good or bad.

This thought exercise is quite similar to what the yield curve is doing. The yields are produced by supply and demand for each maturity. In a real sense, the yields for different maturities reflect the market participants overall outlook on the economy at different times in the future.

When the yield curve inverts, and longer maturities have lower yields than shorter ones, it means that investors think yields and interest rates will be lower in the future. This is interpreted as pessimism because low interest rates are associated with the Fed trying to stimulate an economy in recession.

So is the yield curve any good at predicting the future?
$S T E P$ Return to your YieldCurve.xlsx workbook and insert a blank sheet. Use FRED's Data Search tool to search for yield curve. Select the top 2 hits, T10Y2Y and T10Y2YM. Get the data and make separate charts with recession shading.

The daily chart is more jagged, but it tells the same story as the monthly frequency chart, shown in Figure 7.8. When the series dips below zero (so 2 -year are higher than 10 -year yields), the yield curve is inverted.

Figure 7.8: FRED Series ID T10Y2YM: Inversion when below zero.
Since 1969, an inverted yield curve has correctly predicted recessions shortly after the inversion (roughly within 15 months). Figure 7.8 shows that when
the series goes below zero, a shaded bar soon follows - except the last one.
Is this time different? As of this writing, in 2024, the yield curve has been inverted for a record long time, www.google.com/search?q=yield+curve+record, yet the US economy seems strong. Will the yield curve be right again?

Takeaways

Excel can be used to make charts and adding controls can make an Excel chart responsive to user input. We used a Combo Box control to allow the user to display the yield curve for a particular month-year.

Excel is not, however, a strong data visualization software. In particular, its ability to manipulate charts, such as spinning a 3D plot, is quite limited.

Python, on the other hand, has extensive data display libraries. We used Google's Colab environment to produce a 3D plot of the yield curve over time. It is simple to share the chart and users can easily click and rotate it.

The yield curve itself has been the subject of extensive research. Analysts model the shape and fit curves to yield data.

Usually, there is a term premium for bonds with longer maturities. Investors have to be rewarded with higher yields when they lock up their money for longer periods of time.

One especially keen area of interest is the concept of an inverted yield curve.
Inversion occurs when long-term yields are lower than short-term (this is not common).

An inverted yield curve is strongly associated with a recession in the near future.

The yield curve, measured by 10 year minus 2 year YTM, inverted on July 11, 2023. It has remained inverted in the early part of 2024 . There is great debate about whether this time it's different.

References

For an overview of the yield curve with excellent graphics and an explanation of the meaning of the yield curve, see Bruce-Lockhart, C., Lewis, E., and Stubbington, T. "An inverted yield curve: why investors are watching closely," Financial Times, April 6 2022, available online at ig.ft.com/the-yield-curve-explained/

National Income Accounting

8.1 GDP and Macroeconomic Volatility

Just like a business needs an accounting system to keep track of what is going on, the National Income and Product Accounts (NIPAs) measure how the economy is doing. Before the 1930s, policy makers were flying blind-no one really knew how the economy was performing.

Gross Domestic Product (GDP) is the market value of all final goods and services produced within a country in a given period of time. This is the most fundamental measure of economic activity.

The bedrock accounting equation is $G D P=C+I+G+N X$. There are several ways to compute GDP, but this equation focuses on spending. It says that GDP can be computed as the sum of Consumption (C), Investment (I), Government (G) spending, and Net Exports (NX).
$S T E P$ Open Excel and save a workbook as GDPInvestment.xlsx. Enter these SERIES IDs in the top row: GDP, PCEC, GPDI, GCE, and NETEXP. Use the FRED Excel add-in to get the data (refer to previous work with FRED if needed). In cell K8 enter the formula $=B 8-D 8-F 8-H 8-J 8$. That is GDP - C - I - G - NX. Display three decimal places.

Excel shows 0.000 - GDP really and truly is the sum of spending by consumers, firms, and governments (local, state, and federal), plus net exports.

$S T E P$ Fill cell K8 down. Scroll down and look at the values.

Yes, $\mathrm{GDP}=\mathrm{C}+\mathrm{I}+\mathrm{G}+\mathrm{NX}$ is always true, with a little rounding error, a small numerical discrepancy. For example, adding 1.3 and 1.6 gives 2.9. If we round to the integer before adding, we get 1 plus 2 equals 3 . Rounding error is often found when the sum of percentages are slightly more or less than 100% in a table.

With three decimal places displayed, you can see that sometimes column K shows a plus or minus 0.001 . That is rounding error in the GDP aggregates (C, I, G, and NX).

GDP is a flow not a stock. GDP measures output per time period (usually a quarter or a year), not a total accumulated at a point in time. Imagine water flowing into a bathtub-GDP is how much water is pouring in (so liters or gallons per minute) not how much water is in the tub.

C, I, and G are the total spending (purchased final goods and services) made by consumers, firms, and governments, respectively. A computer can be C, I, or G, depending on who bought it. It is C if you or I bought it for personal use, I if a firm bought it, and G if a government agency bought it.

Every buyer is either a consumer, firm, or government. By tracking the spending of these three categories of buyers, we get a total of the value of all final goods and services produced in a given time period.

But GDP is certainly not perfect. It misses things that are produced, but not sold like household work. Imagine if millions of moms stayed at home and cooked, cleaned, and took care of kids, then society changed and many of those moms went to work and paid others to cook, clean, and take care of the kids. Before, none of that work was counted and after, it was.

GDP is also criticized because it says nothing about how the economy's output is distributed. It is a measure of total output and is silent on important issues of inequality and poverty.

It is easy to forget that G does not include transfer payments (such as Social Security benefits). "Government spending" in the macroeconomic sense means the purchase of final goods and services by governments (e.g., roads, schools, and military gear).

It is even harder to remember that, in macroeconomics, I does not represent investing in stocks or other speculative activity. Instead, investment is a subcategory of total spending focusing on goods and services purchased by firms.

While the core meaning of investment is the purchase of new tools, plant, and equipment by firms, it also includes residential investment (new housing construction) and changes in business inventories (produced, but unsold output).
$S T E P$ Insert a new sheet and, in the top row, enter these SERIES IDs: GPDI, PNFI, PRFI, and CBI. Get the data. In cell I8 enter the formula $=B 8-D 8-F 8-H 8$ (Gross Private Domestic Investment minus Private Nonresidential Fixed Investment minus Private Residential Fixed Investment minus Changes in Business Inventories). Display three decimal places and fill down. Scroll to the last row and keep an eye on column I as you scroll.

Once again, with a bit of rounding error $(+/-0.001)$, the data show that total investment really is the sum of those three subcategories.

The first of the three investment categories is what we might call true investment in the sense of tools, plant, and equipment purchased by firms. It is by far the largest type of investment.

The second category, new housing construction, could have been included in C (consumers buy homes), but by convention it is considered investment. There are many types of dwellings (think houses, condos, apartment buildings and more) and the supply of housing is fundamental for every economy.

By the way, sales of existing homes (or cars or anything used) are not expenditures on goods produced during the given time period so they are not counted as part of GDP. This makes sense since we only want to measure the production of goods and services and we do not care if previously produced items are exchanged.

The final category, changes in business inventories, covers the fact that some things are produced in a given year, but sold later. By keeping track of inventories, we properly account for goods and services produced in a given time period. You can see in the data that this category is a small percentage of total investment.

So C, I, and G are what consumers, firms, and governments buy, but what about NX? What do exports minus imports have to do with GDP? We have to make sure we count things produced at home, but exported (so there is no domestic spending for these items) and we want to subtract things we buy that were not made by us. NX is like CBI, a category that makes sure we are correctly counting everything.

A quick look at the data will show that, perhaps surprisingly, net exports do not matter much in the grand scheme of things.
$S T E P$ Return to the first sheet and scroll down to the last row. In a row below the last row, compute the share of GDP that is C. For 07/01/2023 it would be $=$ D314 $/ \$ B \$ 314$. Repeat for I, G, and NX.

The data show that C is by far the largest share of GDP, roughly $2 / 3$, while I and G are usually about $1 / 6$. Even though the United States is a relatively open economy and we live in an era of globalization, NX is a small share of GDP, just a few percentage points.

During the Great Depression, it became clear that we needed a way to measure how the economy was doing. Obviously the economy was doing badly, but there was no objective, quantitative information on how bad it was and how different areas of the country were doing. National income accounting is much more complicated than the overview presented here, but at its core it measures economic performance by:

$$
G D P=C+I+G+N X
$$

Short- and Long-run Macroeconomics

The 1930s were so traumatic that the Great Depression not only led to the creation of government agencies to measure output and unemployment, but a whole new area of economics was born. Macroeconomics, the study of the overall economy, is split into two parts: short and long run.

In previous work, we used Maddison data to explore the long-run economic performance of different countries and compare CAGRs. The variability over many years was staggering, with some countries enjoying decades of sustained growth while others continue to languish.

We will use FRED data to examine short-run economic performance. GDP and its subcategories will be the stars of the show. Although we have learned some things about managing the economy in the short-run, a great deal remains mysterious and we do not know exactly why a market economy is so unstable and volatile.

The stylized graph in Figure 8.1 shows a market economy's actual performance (the thin squiggly line) moving around its long-run path, also known as Potential GDP.

Figure 8.1: Short- and Long-run Macroeconomics.

Figure 8.1 has good news and bad news. The good news is growth-over time, Real GDP has increased and the curved nature of the path portends big increases in the future. Figuring out how the market system delivers such growth in output over time remains a central, unsolved problem in economics.

The bad news is the fluctuations in output - every drop in actual Real GDP causes pain via job loss and firm collapse. Understanding why the market system is so erratic is another central, unsolved problem in economics.

These two fundamental properties of market economies, long-run growth and short-run fluctuations, drive the organizational structure of macroeconomics. For long-run analysis, we use growth theory models and focus on the trend of real GDP per person with a time scale of decades or more. An important goal is to make output per person grow fast, with 2% per year considered very good for rich countries. Seemingly small percentage point increases in CAGR produce huge gains over long periods of time.

Short-run macro pays little attention to population growth, since it remains roughly the same from one quarter to the next, and focuses on explanations for rising and falling GDP from one quarter to the next. Instead of CAGR over many years, the most common measure is the annualized percentage change in GDP from one time period to the next. When positive, the economy is booming, while negative percentage changes indicate recession.

In the short run, more variables come into play, such as prices, interest rates, and future expectations, because they seem to impact the boom-bust cycle. A key goal is to stabilize the economy. Government policy makers actively attempt to manipulate the economy so as to even out the variability and reverse downturns. We want not only acceleration, but a smooth ride.

Figure 8.1 is not based on actual data, but the roller coaster or boom-bust depiction is a feature of the market system. Figuring out why the economy roars and then stagnates is one of the central questions in short-run macro.
$S T E P$ Insert a new sheet in your workbook and use FRED to get data on GDPPOT and GDPC1. Make a single chart (use an initial date of $1 / 1 / 1950$ for $G D P C 1$) of both series.

Unlike Figure 8.1, your chart shows that the US economy has been above its path (Potential GDP) for a while. This is certainly welcome news and will influence future projections of potential output. The Great Recession of 2008 and the effects of the covid pandemic are clearly visible.

You may have noticed that we used GDPC1 instead of GDP (as in the previous section). The difference between the two is how they incorporate prices. $G D P C 1$ is Real GDP and GDP (without the C1) is Nominal GDP.

Real GDP holds prices constant so its changes are due solely to output changes. Nominal GDP uses current prices so its changes are a combination of output and price changes.

GDPC1 uses chained-dollars (hence the C) to hold prices constant. Because buyers respond to changing prices and innovation creates new products, it is impossible to maintain a truly fixed basket of items with which to construct a price index. Chained-dollars are a way around this problem and they are used for many other macro variables - whenever you see "chaineddollars" that means the variable has prices held constant and is in real terms.

Real GDP is the correct GDP to use when you are interested in how the economy is doing over time. If you use Nominal GDP and there is inflation, you might conclude that the economy is growing rapidly, when it is just rising prices making Nominal GDP increase.

Who's Responsible?

Let's dive down into Real GDP and explore its components. Our goal is to see if we can figure out why Real GDP is so volatile. Is it C, I, or G? In other words, are consumers, firms, or governments responsible for the business cycle?

This is not a mystery novel, but we like surprises so we will wait for the big reveal. You might want to pick one and see if you get it right.
$S T E P$ Insert a new sheet in your workbook and enter GDPC1, PCECC96, GPDIC1, and GCEC1 in the first row. Enter pca in the second row (under each SERIES ID). Get the data.

You are looking at the annualized percentage change (that is what pca does) for each macro aggregate. We need to visualize the data to understand what is going on. We start with Real GDP.
$S T E P$ Use FRED's charting tool to make a graph of annualized percentage changes in GDPC1 over time.

Figure 8.2 shows what your chart should look like. There are two things to notice. First, the percentage change is negative in every recession. This makes sense since the definition of a recession is a downturn in the economy. Second, before 1980, it seems the economy was more volatile than after 1980. Look carefully at how the spikes hit and exceed 10.0 percentage points before 1980, but they are more tamped down after the recession in the early 1980s.

Figure 8.2: Annualized percentage change in Real GDP over time.

So, which of the three macro aggregates, C, I or G is responsible for this? You get one last chance to guess before the big reveal.
$S T E P$ create three individual charts of C, I and G. Stack them on top of each other.

At first, they seem similar, but look carefully at the y-axis of each chart. We need to standardize them to compare them correctly.
$S T E P$ Change the y-axis min and max to - 100 and 150 in the C and G charts so that the three charts have the same y-axis.

The result is dramatic. It is easy to see that Investment is much more volatile than Consumption or Government spending.
$S T E P$ Another way is to create a single chart with C, I, and G. Use FRED's Create Multiple Series Graph to do this.

Figure 8.3: Investment drives volatility in GDP.

Your chart (the same as Figure 8.3) clearly shows Investment volatility swamping Consumption and Government spending. It is not that C and G do not matter, in fact, a great deal of effort is devoted to explaining how C changes. Forecasting consumer sentiment and spending is important.

But there is no question that a critical source of the volatility in GDP is coming from I. The question then becomes, Why is investment so volatile?

We know investment depends on interest rates from our previous work on IRR. For a project to be undertaken, the IRR must be greater than the appropriate discount rate. Often, this is a cost of funds measure or market interest rate. Thus, as interest rates fall, investment rises and vice versa.

Thus, conventional wisdom says that investment is volatile because interest rates bounce around a lot. But there is another important factor affecting investment: emotion.

John Maynard Keynes, the leading economist of the first-half of the $20^{\text {th }}$ century argued that interest rates alone could not explain the volatility of investment. He coined the term animal spirits to capture the instinctual and primitive forces that help drive decision-making:

Even apart from the instability due to speculation, there is the instability due to the characteristic of human nature that a large proportion of our positive activities depend on spontaneous optimism rather than on a mathematical expectation, whether moral or hedonistic or economic. Most, probably, of our decisions to do something positive, the full consequences of which will be drawn out over many days to come, can only be taken as a result of animal spirits - of a spontaneous urge to action rather than inaction, and not as the outcome of a weighted average of quantitative benefits multiplied by quantitative probabilities. Enterprise only pretends to itself to be mainly actuated by the statements in its own prospectus, however candid and sincere. Only a little more than an expedition to the South Pole, is it based on an exact calculation of benefits to come. Thus if the animal spirits are dimmed and the spontaneous optimism falters, leaving us to depend on nothing but a mathematical expectation, enterprise will fade and die; - though fears of loss may have a basis no more reasonable than hopes of profit had before.
Keynes (1936, Chap 12).

Keynes was a genius and polymath. He managed the portfolio at King's College (one of Cambridge University's wealthiest colleges), where he was a professor. He knew philosophy and art, but also understood mathematics and what we call today analytics. He was convinced that human behavior had a subjective element that required going beyond data. He was an early behavioral economist who was interested in the psychology of individual and group decision-making. Keynes did not believe that we could explain the volatility of investment with interest rates alone. Animal spirits captured the instinctive, non-quantifiable, irrational forces that drive us.

There is no doubt about it: investment is the source of the volatility in GDP. Investment is driving the business cycle. Figuring out how and why I is so volatile is at the top of research agenda in modern short-run macroeconomics.

Takeaways

The key equation in national income accounting is

$$
G D P=C+I+G+N X .
$$

This says that total output can be measured by adding the spending of consumers, firms, and governments (with an adjustment for net exports).

National income accounting is all about categories and adding up subcategories into bigger aggregates. Investment, for example, is composed of spending by firms on new tools, plant, and equipment plus new housing construction plus changes in business inventories (a subcategory to handle goods sold in a later time period).

Long-run macroeconomics is about the path the economy is on, while shortrun analysis focuses on the ups and downs of the business cycle.

Instead of computing a CAGR over long periods of time, the short run is about quarterly changes or predicting how the economy will be doing a few months from now.

A core question in the short-run concerns the intense volatility of market economies. Booms are followed by busts in a wild roller coaster ride. The focus is on identifying the source of the volatility and how to manage it.

Investment is the culprit. It has much bigger ups and downs than C or G .
While interest rate movements contribute to investment fluctuations, animal spirits (defined by Keynes as a "spontaneous urge to action") often produce waves of euphoria and rapid upswings in the economy that are then followed by pessimism and recession.

If you want to see Keynes speaking from a 1930s newsreel and learn more about his most famous book, The General Theory, visit vimeo.com/200367754.

References

The epigraph is from p. 1-2 of "Concepts and Methods of the U.S. national income and product accounts" (visited in November 2023 and available at www.bea.gov/methodologies/index.htm\#national_meth). This document answers the question, How did the NIPAs originate? It is noteworthy that the person instrumental in setting up British national income accounts, Richard Stone, also received a Nobel Prize in Economic Sciences. Establishing a coherent, reliable methodology for aggregate measures of economic performance is not trivial.

Keynes, J. M. (1936) The General Theory of Employment, Interest and Money. Full text online at www.marxists.org/reference/subject/economics/keynes/general-theory.

For a more modern take on the role of psychology on investment and human behavior, see Akerlof, G. and Shiller, R. (2010) Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism (Princeton University Press).

8.2 International Comparisons

We know that national income accounting is grounded on this key equation:

$$
G D P=C+I+G+N X .
$$

Simple logic says that fluctuations in GDP must depend on its components and the data for the United States show that Investment is more volatile than Consumption and Government spending.

But what about other countries? Is investment responsible for the boom and bust nature of GDP in other economies?

Data from the Organisation for Economic Cooperation and Development (OECD) answers this question. This international agency was created after World War II and serves, in part, as a hub for data gathered from member countries. They are online at oecd.org, but we will access the data through the FRED Excel add-in.

There is a data issue to address before we explore the volatility of investment in other countries. Instead of Investment spending, the OECD reports Gross Fixed Capital Formation (GFCF) as a measure of investment activity.

There are several differences between I and GFCF, but the key one is that GFCF includes second-hand assets (think of used heavy machinery that is purchased by a manufacturing company). Investment, on the other hand, counts only new tools, plant, and equipment.
$S T E P$ Insert a sheet in your GDPInvestment.xlsx workbook. In the top row, enter GPDIC1 (this is Real I) and NAEXKP04USQ652S (this is Real GFCF). Enter 01/01/1972 in cell A4 (so both series start from the same date) and get the data. Widen column D , if needed.

Investment spending is in billions of dollars so, to make it easier to compare the two, we need to convert GFCF to billions of dollars.
$S T E P$ Enter the formula $=D 8 / 1000000000$ (carefully enter 9 zeroes) in cell E8. Fill it down.

It is easy to see that column E, GFCF (in billions) is greater than column B (I in billions). This is mainly because GFCF counts the resale of previously produced tools, plant, and equipment and I does not. It also means that you would not get $\mathrm{C}+\mathrm{GFCF}+\mathrm{G}+\mathrm{NX}$ to equal GDP.

It is not that GFCF is wrong, but we want to be aware that it is a different measure of investment activity than I. The OECD uses GFCF in its country reports and highlights it as their preferred measure of investment activity. We will compare the volatility of GFCF to C and G to answer our question.

OECD Countries and Series IDs

The OECD has data on real C, GFCF, and G for 39 countries. We will focus on the major economies in the OECD, called the G7: Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States.

To get the data, we parse the Series $I D$ we used to get GFCF for the United States: NAEXKP04USQ652S. To parse means to separate something into its component parts.

The Series ID for OECD macro aggregates has five parts. We can show this using vertical line separators:

NAEXKP|04|US|Q|652S

In the second part, the 04 indicates GFCF, 01 is GDP, 02 is C , and 03 is G.

The third part is a two-character country code. The table in Figure 8.4 shows the two-letter abbreviation for each country.

The last part is troublesome because it is different for different countries. This means that we cannot simply plug in the two-letter FRED code for each country because the last part of the Series ID (the part after the Q) is not always the same. As a workaround, we use FRED's search tool.

Country	FRED code						
Australia	AU	France	FR	Japan	JP	Slovak Republic	SK
Austria	AT	Germany	DE	Korea	KR	Slovenia	SI
Belgium	BE	Greece	GR	Luxembourg	LU	South Africa	ZA
Brazil	BR	Hungary	HU	Mexico	MX	Spain	ES
Canada	CA	Iceland	IS	Netherlands	NL	Sweden	SE
Chile	CL	India	IN	New Zealand	NZ	Switzerland	CH
Czech Republic	CZ	Indonesia	ID	Norway	NO	Turkey	TR
Denmark	DK	Ireland	IE	Poland	PL	United Kingdom	GB
Estonia	EE	Israel	IL	Portugal	PT	United States	US
Finland	FI	Italy	IT	Russia	RU		

Figure 8.4: OECD Country Codes.
$S T E P$ Insert a sheet in your GDPInvestment.xlsx workbook and click the Data Search button. In the search box, enter the text NAEXKP02USQ and click the Series $I D$ option (below the search box). Click the Search button. Select the series with units of $U S \$$ and click the Add Series IDs button at the bottom of the dialog box. Change the 2 to a 3 in the search box and repeat the procedure: search, select the series with units of US $\$$, and add it to the spreadsheet. Change the 3 to a 4 and repeat again. Click close and then get the data.

You have real C, G, and GFCF for the United States. But we want the annualized growth rate for each quarter and we want to start from the same date.
$S T E P$ Change lin to pca in each cell in row 2 and set the start date in row 4 to 04/01/2002 (since that is the latest date for the series). Get the data.

We are ready to answer the question of which component is the most volatile for the United States, but this time using GFCF instead of I.
$S T E P$ Use FRED's Build Graph tool to put the three series on the same chart.

GFCF seems a little more variable than C and G, but the difference is not as dramatic as when we used Investment spending. Also, there is a sharp increase in G in 2007 that is not in the NIPA data. That is an error in the OECD data.

The SD

Before we explore the other G7 countries, we offer a more objective measure with which to gauge volatility than the eyeball test we have been using.

The standard deviation or SD is a measure of dispersion in a list of numbers. if the numbers are bunched tightly together, the SD is low (if they are all the same, then the SD is zero). The more spread out the numbers, the larger the SD.

The SD has the same units as the numbers. If we measure the heights of 20 college students in inches, then the SD is in inches.

Think of the SD as a $+/$ - number. The SD tells us the size of the typical deviation from the average. If the average height is 5 feet 8 inches with an SD of 3 inches, that says most of the students are around 5 feet 8 inches tall, give or take 3 inches. In other words, most of them are between 5 foot 5 inches and 5 foot 11 inches.

It would not make sense that the SD of the height of 20 college students was 4 feet because then the range is from under 2 feet to almost 10 feet tall.
$S T E P$ Return to the sheet with GDP, C, I, and G (from the US NIPAs) and scroll down to the bottom row. In a row below the last row, in column B, use Excel's STDEV.P function to compute the SD of Real GDP. Copy your formula and paste it in columns D, F, and H .

Figure 8.5: SD of GDP, C, I, and G.

Figure 8.5 shows the result as of fall 2023 (so $07 / 01 / 2023$ is the last value). Investment spending is in column F and it has a much higher SD , or dispersion, than C or G. Does the same hold true for GFCF?
$S T E P$ Return to the sheet with the OECD measures of C, G, and GFCF. Scroll to the bottom and compute the SDs for the three series. Yes, GFCF has a higher SD than C or G, but not by a lot.

Discovery

What about the other G7 countries? Use the procedure applied above to explore the volatility of C, G, and GFCF.
$S T E P$ Download OECD data on the annualized percentage change in real C, G, and GFCF. Make a chart. Compute the SDs of the three series. What do you find with respect to the crucial question about volatility in GDP - is investment driving volatility in GDP for these economies?

Notice that the Series IDs can be tricky to work with in this case. Confirm that the Series IDs are correct and that they make sense. It is easy to make a mistake. A simple check is to click on the URL in row 5 of each variable and make sure it is the correct country and series.

Introduction to VBA

9.1 Macros in Excel

You have learned many new Excel functions, created a variety of different charts in Excel, and used Solver, Comparative Statics Wizard, Monte Carlo simulation, and FRED Excel add-ins. But those are all frontend Excel skills.

For computer scientists, the frontend is the presentation layer or the user interface of software. The frontend is that part of the restaurant where the diner sits down and orders food.

The backend of a restaurant is the kitchen where the meal is actually made. Excel's backend is built on a computer language called Visual Basic. Excel and other Office products such as Word and PowerPoint run a version called Visual Basic Applications edition or VBA, for short.

It is in VBA that we write code, also known as macros, to perform especially complicated tasks. The code is written and stored in modules. The resulting Excel workbook is a combination of spreadsheets and modules that must be saved as a macro-enabled workbook with extension .xlsm. Without macros, an Excel spreadsheet has file extension .xlsx.

> EXCEL TIP Excel warns you if you save a workbook with macros as a simple Excel workbook (.xlsx). If you ignore the warning, it will simply save the workbook without the macros and your code will be lost.

There is no question that a macro-enabled workbook is more powerful than a simple spreadsheet, but this power comes at a cost. Not only do you have to know how to write code in VBA, but your end-user will probably have to enable macros when opening the file. Sometimes, security settings in a particular installation of Excel are set so high that the macros will not be allowed to run. The user has to change Excel's settings, adding another layer
of difficulty, just to open the file.
EXCEL TIP if you can accomplish a task without macros, always do so. Sometimes, however, VBA is the only solution.

Hello, World!

It is a tradition in computer science to introduce a new language by outputting "Hello, World!" Let's do it.
$S T E P$ Open Excel and save the file as IntroVBA.xlsm, making sure to save it as a macro-enabled workbook with the .xlsm extension by clicking the Save as type in the save window and choosing .xlsm. Click the Visual Basic button in the Developer tab in the Ribbon. If the Developer tab is not visible, press alt, f, t and click Customize Ribbon, then check Developer in the list. You can also access Vosual Basic by pressing alt-F11 (you may need to use the function ($f n$) key) or right-clicking the sheet tab and selecting View Code.

You have a new window on your screen with a lot of things you have never seen before. Welcome to Excel's kitchen! You are in the Visual Basic Editor (VBE).

Across the top there is a familiar menu of items. The top-left panel should be the Project Explorer (press ctrl-r if you do not see it). You may also see other panels.
$S T E P$ In the Project Explorer panel, scroll, if needed, to find your IntroVBA.xlsm workbook (it will be in parentheses after VBAProject), and select it (highlighted in blue). Click Insert in the top menu and select Module.

You now see a blank window. This is where you will write your code. Notice also that your workbook in the Project Explorer panel now has a new component, the module you just inserted.
$S T E P$ The cursor should be blinking in the blank window, but if not, click in the window. Enter the text sub myfirstmacro and press enter.

The text is transformed. The S is capitalized and $S u b$ is in blue, parentheses have been appended, and a new line End Sub has been added. Apparently, VBE is a high-level editor with a great deal of support.

Sub stands for subroutine, a set of instructions or lines of code. The statements between the Sub and End Sub lines are the body of the macro. You could pass arguments to your $S u b$ by entering them in the () on the first line.
$S T E P$ In the middle line (where the cursor is blinking), enter the text msgbox "Hello, World!" and press enter.

As you entered the text, you undoubtedly noticed the yellow pop-up showing the various options for the MsgBox object. This shows again the strong support offered in the editor in the VBA environment. Also, this example reveals that VBA is an object-oriented programming language. We write code to apply different methods and options to the objects.

We have finished our first macro and are ready to run it.
$S T E P$ Click Run in the top menu and select Run Sub/User Firm (or press F5).

You did it! You are returned to the Excel spreadsheet and it displays a message box with "Hello, World!" on it.

This is exciting, but how can we run the macro from the spreadsheet?
$S T E P$ Press OK to close the message box and click the Developer tab. Click the Insert button and select the top-left Button icon. Click and drag in the spreadsheet to create a button. In the AssignMacro dialog box, select myfirstmacro and click OK. Click on an empty cell in the spreadsheet.

You have added a button to the spreadsheet and attached a macro to it. When you click the button, the macro will run. Try it.
$S T E P$ click the button to see the message box pop up.

Now the user does not have to know how to run macros in VBA. By attaching the macro to the button, you have made it easy for the user to run your code.

EXCEL TIP Regular (left) clicks enable you to use objects in Excel. Right-clicks select objects so that you can modify them.
$S T E P$ Right-click your button and replace the Button 1 text with Click Me. Click the button to see that it works.

This shows that the caption of the button can be different from the name of the macro.

We used scroll bar and combo box controls earlier, but they were not macroenabled. By assigning macros to controls, we greatly expand the power of Excel.

Recording Macros

VBA is hard at first because beginning users do not know any of the objects or commands. It is like learning a new spoken language, you know the words exist for what you want to say, but you do not know what they are.

One way to start growing your VBA vocabulary is by recording macros. You turn on the recorder and do things in Excel, then examine the recorded code in VBA.
$S T E P$ Click the Developer tab and click the Record Macro button. Click OK in the pop up dialog box. Select cell A1 and enter 100. Make the formatting \$. Click the Stop Recording button. Press alt-F11 to go to VBA.

There is a new module sheet in your VBA project.

$S T E P$ Double-click Module2 in the Project Explorer panel.

You are looking at the code needed to do the steps you did in Excel. You now know that Selection.Style $=$ "Currency" applies currency formatting to the selected cell.
$S T E P$ Change the 100 in the recorded macro to 0.1 and change Currency to Percent. Return to Excel by pressing alt-F11 (this toggles you between Excel and VBA). Right-click your button and select AssignMacro. Choose Macro1 (that you just recorded and edited) and click OK. Click an
empty cell in the spreadsheet and click your button.
Your macro changed A1 to 0.1 and formatted it as percent! This demonstrates that you can definitely control Excel from VBA.

This example shows how you can record a macro to reveal the code needed to perform a task in Excel. The usual procedure is to record a series of steps and then edit the code, removing superfluous lines and changing values or other attributes.
$S T E P$ Use the macro recorder to write a macro that takes a random number from a cell and pastes its value in the cell below it. Assign your macro to your button and click the button to run it. If you need help, see the appendix.

Takeaways

In the late $20^{\text {th }}$ century, Excel was in a race with other spreadsheets that you have never heard of because Excel completely overwhelmed them. In 1993, Excel 5.0 debuted with VBA and Microsoft crushed the competition.

VBA is an implementation of Visual Basic that runs within Excel. Macros are written in VBA in modules and then assigned to controls (such as buttons) on the spreadsheet.

If you want to continue learning about VBA, Jacobson's Step-by-Step book is a great place to start. The files needed were originally on a CD (an older technology that could store "huge" amounts of data), but they are available for download at tiny.cc/hbvba.

You can also look at open-source VBA code. For example, the Comparative Statics Wizard and Monte Carlo simulation add-ins are freely accessible. So are the macro-enabled workbooks we have used. You can open their modules and inspect the code to learn VBA.

References

The epigraph is from the first chapter of Reed Jacobson's Microsoft Office Excel 2007 Visual Basic for Applications Step by Step (Pearson Education) Kindle Edition. This book is out of print, but there are many copies available and it remains a great way to learn how to write macros in Excel.

Appendix

$S T E P$ Click the Record Macro button and enter the formula $=$ RAND () in a cell. Copy the cell, select another cell, and Paste Special as Values. Stop recording and go to VBA. The body of your recorded macro (the code between the Sub and End Sub lines) should look something like this:

```
,
, Macro3 Macro
,
,
Range("A3").Select
ActiveCell.FormulaR1C1 = "=RAND()"
Range("A3").Select
Selection.Copy
Range("A4").Select
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, _
SkipBlanks :=False, Transpose:=False
Range("A5").Select\\
```

These lines are the actual commands you gave Excel. Notice that an apostrophe at the start of a line comments out that line (it is not executed) and is displayed in green-colored text (e.g., the line Macro3 Macro). The underscore character, , continues the current statement on the next line.

You could clean up this code so it looks like this:

```
Range("A3").FormulaR1C1 = "=RAND()"
Range("A3").Copy
Range("A4").PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, _
SkipBlanks:=False, Transpose:=False
Range("A5").Select
```

You could comment out the first line and it would still work since the RAND() function is already in cell A3. Running this macro replaces the contents of cell A3 without any warning. You do not notice this because the code writes the same formula that was there.

9.2 Functions in VBA

Attaching a macro to a button or other object allows you and your users to run VBA code, but there is another way to access code from an Excel workbook: a user-defined function (UDF).

Unlike a native function, like $=\mathrm{RAND}()$ or $=\mathrm{SUM}($ cell range $)$, which is part of the Excel application itself, UDFs are functions that you write in VBA and are stored in a module in a macro-enabled workbook (filename extension .xlsm).

To the user, UDFs work the same as native functions, so they require no special knowledge. The only extra step is that the user has to enable the content in the workbook (or disable all security, which is not recommended).

To demonstrate how UDFs work, we will create two user-defined functions, the first without any arguments and the second will allow the user to pass information to the function, making it more flexible and useful.

UDF with No Arguments

Recall from our work on Monte Carlo simulation that we can create a 90% free throw shooter in Excel with the formula, $=\operatorname{IF}($ RAND ()$<0.9,1,0)$. Alternatively, we could create a function in VBA, say $F T($), that the user could enter in any cell. Ninety percent of the time it would produce a 1 and the remaining ten percent would be 0 .
$S T E P$ open your IntroVBA.xlsm macro-enabled workbook and press alt-F11 to go to Visual Basic. Insert a new module sheet in this workbook. Type the text function $F T$ () (uppercase FT) and hit enter.

Excel's Visual Basic Editor capitalizes the F in function, adds an End Function for you, and colors the text blue for the beginning and ending lines of the code.

Instead of the Excel function $=R A N D()$, VBA has its own random number generator Rnd. It produces random numbers in the interval from 0 to 1 . It is super easy to make our UDF output a random number.
$S T E P$ Enter the text $F T=R n d$ and press enter. Return to Excel (altF11 is a toggle) and click on cell H1. Enter the function $=F T()$ and press enter.

Congratulations! You just wrote your first function in Excel and accessed it from Excel.

EXCEL TIP For UDFs, Excel remembers how you first entered the function. If you enter $=f t()$ (lowercase), it will keep using lowercase (even if you enter $F T$ in a different cell). This is not true for native functions: enter $=\operatorname{rand}()$ and Excel converts it to $=$ RAND ().

There is, however, a problem with our UDF.
$S T E P$ Press F9 a few times. Nothing happens to cell H1. It is not bouncing like $R A N D()$, generating a new random number each time we recalculate the sheet.

The problem is that UDFs, by default, are non-volatile functions. This means they do not get recalculated unless they depend on other cells that have changed. We must add code to make our function recalculate when F9 is pressed.
$S T E P$ Return to your VBA code for the $F T$ function. Click on the top line, after the close parenthesis and press enter so that you are on a new, blank line and enter the text Application.Volatile True. Press enter. Return to Excel and press F9 a few times. Success!

But we do not want to simply output a random number, we want to see if we made (1) or missed (0) a free throw attempt. We need to add some code to do this. Like the Excel formula we used to model a free throw result, we need an If statement to separate made from missed free throws.
$S T E P$ Go to the $F T$ code. Click after True and press enter to create a new line after the volatile statement. Enter the text if rnd <0.9 then and press enter.

As usual, the editor capitalizes and colors the text for you. The next line of code defines what happens if the random number is less than 0.9 . It is followed by lines of code for missed free throws.
$S T E P$ Press the $t a b$ key to indent, type the text $F T=1$, and press enter. Type the word Else and press enter. Press tab, type $F T=0$, and press enter. Type end if and press enter. Put an apostrophe (') in front of the $F T=$ Rnd line to comment it out (so it does not get executed).

Your masterpiece of code should look like this (with color added to keywords and lines):

Function FT()
Application. Volatile True
If Rnd < 0.9 Then
FT $=1$
Else
$\mathrm{FT}=0$
End If
'FT = Rnd
End Function

The macro draws a uniformly distributed random number on the interval from 0 to $1(R n d)$ and if it is less than 0.9 it goes to the $F T=1$ line. Since the function is called $F T$, it outputs the number 1 if $R n d<0.9$. If the random number drawn is not less than 0.9 , it goes to the $F T=0$ line and outputs a 0 .

The code is easy to read, but does it actually work? Let's find out.
$S T E P$ Return to Excel, fill cell H1 down to cell H10 and press F9 a few times.

That is pretty cool, but what if we wanted a more generalized version, where the user tells us the chances of success?

UDF with an Argument

In native Excel functions, like $S U M$, for example, the arguments are passed in the parentheses: $S U M(A 1: A 3)$. UDFs work the same way. We will add an argument to our code in the parentheses and modify the code to enable it to incorporate the information provided by the user.
$S T E P$ Copy the $F T$ code and paste it below the End Function line. Since you cannot have two functions with the same name, change the name of the newly pasted function to $F T A R G$ (for argument). In the parentheses, type the text Shoot as Double. Replace the 0.9 in the If statement line with Shoot. Return to Excel and enter the formula $=F \operatorname{TARG}(0.5)$ in cell I1.

Excel displays an error message in cell I1. Can you figure out what is wrong with the UDF and fix it? If you cannot, take a look at the appendix.

We can make the function even more flexible by having it accept a value in another cell.
$S T E P$ Copy the FTARG code and paste it below the End Function line. Change the name of the newly pasted function to FTARGCELL (for argument from another cell). In the parentheses, change the text to myShootCell as Range. Replace Shoot in the If statement line with myShootCell.Value. Change the FTARG = 1 and FTARG $=0$ lines to FTARGCELL $=1$ and $F T A R G C E L L=0$. Return to Excel and enter the formula $=F T A R G C E L L(K 1)$ in cell J1. Fill it down to cell J10. In cell K1, enter a number from 0 to 1, such as 0.25 . Press F9 a few times.

With a 25% chance of success, your ten numbers in column J are bouncing around every time you press F9 and you usually get 2 or 3 ones.

Is it better to allow the user to input a number as the argument or a cell address? That depends on the context of the problem, including the user's familiarity with Excel. In fact, if you do not need to change the success rate, our original UDF, $F T($), might be the best choice.

Takeaways

VBA code can be accessed by users from Excel's front-end by attaching macros to buttons and other controls.

Another option is a user-defined function or UDF. The user enters a formula that runs the UDF code to do computations or other manipulations that are not available in native Excel functions.

Like native Excel functions, UDFs usually require arguments. These variables are declared in the Function statement, inside the parentheses.

Writing code is science and art. Deciding whether arguments are needed and, if so, how to pass them (numbers or cell addresses, for example) requires knowledge of what needs to be done and who is going to do it. You need to know your audience.

Most people think of Excel as some kind of sophisticated adding machine or calculator. Excel can certainly do arithmetic and other mathematical operations, but its back-end or kitchen opens up a whole new world of opportunities and possibilities.

Appendix

The FTARG function fails when you change the name of the function to $F T A R G$, but do not likewise update the name of the function in the code. You must change the $F T=1$ line to $F T A R G=1$ and the $F T=0$ line to $F T A R G=0$.

When you write a UDF, you always use the function name to output a result. If you need more than one cell to output results, you can use an array function.

Demographics

10.1 Visualization

Demography is the quantitative study of human populations. Demographers analyze vital statistics about people, including total number, births, deaths, and health. Vital means of the utmost importance and it is true that the oldest and most fundamental statistics include counting the number of people in a place (called a census) and how many were born, died, got sick, or moved.

We will use a remarkable data visualization known as a population pyramid. By showing the number of people by age and sex, this graph not only conveys information about the current situation, it also predicts the future.

First, we will show how population pyramids are made and interpreted using hypothetical examples. Next, we will explore real-world population pyramids. Finally, we will take a close look at two key statistics: the male-female birth ratio and the dependency ratio.

Accessing the Excel Workbook

$S T E P$ Go to tiny.cc/busanalyticsexcel and click the Excel Workbooks link (top right). Click PopulationPyramid.xlsm to download it. Move the file from the downloads folder to a safe place on your computer or network.

The file's .xlsm extension means it is a macro-enabled Excel workbook. When you open it, you must enable macros to get full functionality from the file.
$S T E P$ open PopulationPyramid.xlsm, read the Intro sheet, and be sure to click the Click to Test button. You may have to adjust your security settings as described in the Intro sheet.

Population Propagation

$S T E P$ Click the Begin button at the bottom of the Intro sheet.
A new sheet is revealed called PlanetX. Here is the explanation for this puzzling name.

It is January 1 several centuries from now and humans are, once again, populating a new world. A group of 600,000 adults have arrived on PlanetX. The chart and data below it shows that there are 20,000 people of each age from 15 to 44 .

Not surprisingly, culture and language have changed a great deal. The people on PlanetX are androgynous - they wear the same clothes and there is only one pronoun, himo (borrowed from Pulaar before it disappeared).

Although the Technological Revolution triggered by AI in the $21^{\text {st }}$ century was breathtaking, science has been unable to grow humans outside a natural womb. What were called females are now Productive (P) people. There are 10,000 non-productive (NP) people and $10,000 \mathrm{P}$ for each age cohort.

Over the course of a year, the population will change. The inhabitants will each age one year and some of them will, sadly, pass away. On the other hand, new people (still called babies) will be born. This equation captures these events:

$$
\text { Population }_{t+1}=\text { Population }_{t}+\text { Births }_{t}-\text { Deaths }_{t}
$$

How many births and deaths will occur during the year? That depends on the age-specific fertility (ASFR) and death (ASDR) rates.
$S T E P$ Hover your mouse over cells E15 and F15 and read the definitions of ASFR and ASDR in the comments that pop up. You can also Show All Comments in the Review tab. Scroll down to see that the values for ASFR are all 0.1.

A constant ASFR of 0.1 is not at all close to our fertility rates today. Usually, the age-specific fertility rate rises as females mature, reaching a peak in their 20 s, and then falling again. Women can and do give birth past age 45 so the zeroes after age 44 are also unrealistic.

Unlike the completely fake ASFR, ASDR is roughly that experienced by the United States in the early $21^{\text {st }}$ century. The 0.006 value in cell F16 is called the infant mortality rate. It expresses the chances that a baby born will not survive to their first birthday. There is some good news in that the US infant mortality rate is much lower than it used to be and this is also true all around the world.

We could have made this hypothetical example more realistic by giving different ASDRs for NP and P people. In our current times, females outlive males by several years, on average. We will assume, however, that on PlanetX, NP and P people experience the same age-specific death rates.

Notice how the age-specific death rate declines after the first year and then starts to rise after the teenage years. The value of 0.049 in cell F96 means that an 80 year-old has a 4.9% chance of not surviving to the next year. At the bottom row (101), the value becomes unrealistic-unlike Earth, everyone on PlanetX dies at age 85 .

Before we continue, note that the cells in column B are minus 10,000 . The minus enables those values to be plotted in the blue rectangle (to the left of zero) on the Clustered Bar chart above.
$S T E P$ In cell H3, enter the formula $=-\operatorname{SUM}(C 16: C 101)+S U M(D 16: D 101)$ to add up all of the people at the beginning of the year.

Cell H3 should display 600,000 which is the starting number of people on PlanetX. To compute the number of people born during the year, we use Excel's SUMPRODUCT function.
$S T E P$ In cell H5, enter the formula =SUMPRODUCT(D31:D60,E31:E60).
SUMPRODUCT multiplies (hence the PRODUCT in the name) two or more arrays and then adds them up (hence the SUM). So, it takes the value in cell D31 and multiplies it by E31. This is the number of children $(1,000)$ produced by the 15 year-old Ps. Then it multiplies D32 by E32 and so on. Finally, it adds up the products, in this example, 30,000 .
$S T E P$ In cell H6, use SUMPRODUCT to compute the number of deaths. You will need two SUMPRODUCT terms added together and the NP term needs to have a minus sign in front of it. Unlike births, we use the entire range from row 16 to 101 because there could be deaths at every age.
$S T E P$ Check your work by clicking the Next button.
You are now in a new sheet called Propagate (which means, in general, to spread out or expand and, in biology, the breeding of a plant or animal from parent stock). The first few columns are the same, your computations for births and deaths are replicated (or you can see how to use SUMPRODUCT for deaths), and we now see new data for Year 2.

Cell H7 applies the population propagation equation from above. It takes the starting population, adds births, and subtracts deaths.

The percentage change in the population of 4.89% in cell H 8 is extremely high. The Rule of 70 tells us that we would get doubling in roughly 15 years ($70 / 5=14$, but we are a little below 5%). That is extremely fast for human population growth.
$S T E P$ Look carefully at the Year 2 chart. Do you see the thin red and blue strips at the base of the chart? Those are the 30,000 newly born babies.

We made another simplifying assumption in that half of babies are NPs and the other half are Ps. (Most people think there are equal chances of getting a boy or girl, but this turns out to be incorrect.)
$S T E P$ You can also see the newborns in cells L16 and M16. Click on these cells to read the formulas used. By multiplying by 0.5 , we split the babies into equal amounts of NPs and Ps.

Unlike the first year, the second year's population numbers are all based on formulas.
$S T E P$ click on cells L32 and M32 to see their formulas.
Because their ASDR is 0.0002 , 2 of the 10,00015 year-olds in Year 1 did not survive to Year 2. The formula uses ($1-\mathrm{ASDR}$) to compute the number surviving. The other values in columns L and M are computed the same way.

It is extremely difficult to see on the chart, but the adults no longer form a rectangle. We need more years to make this clear.
$S T E P$ Click the 1 Year button.
A new year appears with the previous year's births, deaths, and net increase in population computed. A new layer has been added at the base of the chart and last year's babies have moved up. The adults are also all moving up.
$S T E P$ click the 1 Year button again.
There are fewer babies than the previous year because some of the Ps died during the year. The data below the chart make this clear.
$S T E P$ we can speed up the propagation by using the ? Years button. Click it, read what it says, enter 20, and then press OK. Scroll right, looking at the data and charts as you scroll, until you reach the final year.

EXCEL TIP Because the sheet uses formulas to compute the surviving number of people at each age from the previous year, recalculating the sheet gets increasingly slower as we add more years. Closing other apps (especially browsers) may help.

In year 24, your chart looks like Figure 10.1. It is now easy to see the tapering of the rectangle at the top as more of the older original settlers do not survive until 85. Also, the children of the original settlers have started having children. The space in the middle reflects the fact that there were no children (ages 0 to 14) at Year 0 .

Figure 10.1: Population Age-distribution in Year 24 on PlanetX.

Figure 10.1 also shows a baby boom after human arrival on PlanetX. Births fell for a number of years, but then a second baby boomlet starts to appear. The dynamics of the pyramid can be quite complicated.
$S T E P$ From any year, click the Animate button.
You are taken to the beginning of the sheet and the years from 0 to 24 are displayed, like a moving picture. It is clear that the chart has an upward motion built into it as time goes by. Each age cohort begins at the bottom and makes its way to the top, getting shorter as it moves up.
$S T E P$ Add enough years to your sheet (using the ? Years button) to get to 100. Excel may take a while to display all of these years so you may have to be patient. Scroll right to Year 100. Your chart should look like Figure 10.2.

At Year 100, it is clear why this chart is called a population pyramid. The pyramid (or triangular) shape of many human societies, with few old and many young people, was quite common when it was first introduced by Francis Amasa Walker, an economist who was the head of the US Census in 1870.

Figure 10.2: Population Pyramid in Year 100 on PlanetX.

The chart is also known as an age-distribution graph or age pyramid and even more technically, it is a bilateral histogram. But no matter what you call it, the amount of information it delivers is impressive. Not only does it give a static snapshot, once you know that it will scroll up as time passes, it provides insight into the future population age-distribution.

It is important to understand that the pyramid shape was produced by the ASFR and ASDR values. Keep propagating and the pyramid shape will get ever more pronounced and the population will keep expanding.

But this is not the only possibility.
$S T E P$ Return to the beginning of the sheet and change the ASFR values from 0.1 to 0.05 by changing cell E31 to 0.05 and entering the formula =E31 in cell E32 and filling it down to cell E60. Scroll right to Year 24. That chart is quite different from Figure 10.1. Scroll right to the end. What shocking result do you see?

So, with ASFR $=0.1$, population keeps increasing and with $\mathrm{ASFR}=0.05$, it shrinks. Is it possible to get some kind of balanced result where it does not grow without bound or collapse completely? Yes. To see this, we need more years.
$S T E P$ Propagate for 200 years or, if your computer is too slow, click the Propagate 200 button.

We want to find the ASFR that produces a constant population or, in other words, its percentage change is zero. This sounds like a job for Solver.
$S T E P$ click Solver from the Data tab (use the Add-ins Manager shortcut alt, t, i if you need to install it). The objective cell is the $\% \Delta P o p$, cell BQN8 in the Propagate200 sheet. We want to make the objective cell equal to zero so check the Value of radio button and make sure it is set to zero. The changing cell is ASFR in Year 1, cell E31. Click Solve.

Solver announces success and you should see that the percentage change cell is displaying 0.00%, but what value of ASDR produced this outcome?
$S T E P$ scroll back to the beginning to see the answer. For a revealing visual of what you have done, click the Time Chart button and select cell H3.

The button produces a chart of the beginning population each year (the values are in column BQN) and provides convincing evidence that we have indeed found a set of ASDR values that result in a population that is neither growing nor collapsing.

The dynamic properties of population pyramids are complicated. Depending on the values of the ASFRs and ASDRs, you can get steady-state (equilibrium) stable, exploding, or collapsing patterns. As we will now see, you can also get different shapes at particular points in time.

Real-world Population Pyramids

Now that we know what a population pyramid is and how to read it, we are ready to examine real-world data. Unlike PlanetX, today, babies are assigned a sex as male or female at birth. Most people identify as adults with their assigned sex, but some do not. The US Census Bureau's Pulse Survey asks about sexual orientation and gender identity (visit www.census.gov/library/ visualizations/interactive/sexual-orientation-and-gender-identity.html). The International Database population estimates below provide only male and female categories.

$S T E P$ click any PopPyr button.

A new sheet appears. You select the country and years, then Excel acts like a browser and gets the data from US Census Bureau. They maintain an international database of past and predicted population age distributions. You can access their website via the link under the chart in the PopPyr sheet.
$S T E P$ click Select a country in the listbox and select Afghanistan. With 2024 in the yellow-background cells K3 and K4, click the Get IDB Data button. Excel downloads the data in columns B, C, and D, and displays it in the chart.

The result is striking. You are looking at a classic population pyramid. Most low-income countries have pyramids like this, with very few old and many young people.
$S T E P$ copy the sheet. This enables comparison of different countries. Change the country to the United States and click the Get IDB Data button. In seconds, you have a new pyramid. Double click the sheet tab and make the name $U S$.

Unlike Afghanistan, this pyramid is triangular at the top, but the sides are more vertical, like a stick-drawing of a house.
$S T E P$ copy the sheet and get Japan's population pyramid. Set the sheetname to Japan.

We get yet another new shape, like a hexagon (or benzene ring, if you know some chemistry). The three shapes are roughly drawn in Figure 10.3. The classic shape used to dominate since most countries were poor, with high fertility and death rates. As countries became rich, they underwent what is now called the demographic transition, first with low death rates, followed by low birth rates.

Figure 10.3: Three common population pyramid shapes.

Japan's hexagon shape hints at big trouble in the future for its economy and society. The narrow base means there are few children to grow up to become workers to support their aging parents.

The United States might be in this same position were it not for immigration. Native-born Americans have much lower fertility rates than immigrants.

In fact, fertility rates are collapsing all around the world. This has been a stunning and completely unexpected reversal coming on the heels of explosively fast population growth in the decades following World War II.

We can see what the Census Bureau predicts by downloading more years.
$S T E P$ Return to your $U S(P o p P y r)$ sheet and set the years to 1950 in cell K3 and 2060 in cell K4. Click the Get IDB Data button. This might take a little time since you are downloading a lot of data. Click OK if you get an error message saying some years are unavailable.

The earliest year of available data for the United States is 1980.
$S T E P$ click the Pick a Year button and enter 1980. Click $O K$.

The baby boom generation was much more noticeable back then. We can animate the chart to see the boomers and everyone else march up the chart.

$S T E P$ click the Play button.

The Census Bureau is projecting a relatively stable population pyramid for the United States up to mid-century. Immigration will continue to play an important role, but the most difficult thing to predict is the fertility rate. Death rates fall slowly, but steadily, while fertility can change quite rapidly.
$S T E P$ Get data for Japan from 1990 (the earliest year) to 2060. What is the demographic outlook for Japan?

And if you think that is mind-blowing, take a look at China or Cuba. In fact, almost every country's population pyramid has a story to tell. The gouges represent traumatic societal events (such as famines or revolutions) and you can get deep insight into economic and social issues from this chart.

Takeaways

A population pyramid is a clever chart that shows the age-distribution of males and females.

Figure 10.4 shows original examples from Walker's 1870 Census report. These were one of the earliest data visualizations and an instant hit.

Figure 10.4: Population pyramids from the 1870 US Census.

High birth and death rates (which used to be common for poor, developing countries) produce lots of children and few old people, yielding a triangular shape with a wide bottom and pointed top, so that's why it is called a population pyramid.

But there are other possible shapes. Many developed, rich countries have gone through a demographic transition, with death rates falling first, then fertility falling. At this time, they have roughly equal numbers of people at each age until finally tapering off for older folks so it looks more like a house.

With really low fertility (and little immigration), we get a hexagon, a house with an added narrow base, like Japan. This has the potential to cause serious problems for the economy and society. Demographic headwinds help explain why Japan's economy has stumbled so badly after flying high in the decades after Word War II.

Population pyramids depict historical events and calamities. Baby booms are easily seen as bulges in the pyramid. Indentations or gouges reflect traumatic events such as famine or political upheaval (China is a good example).

Population pyramids have a dynamic aspect. The cohorts (horizontal bars) march up the graph as time goes by.

Since the rapid expansion of humanity in the 1700 s, we have worried and obsessed about too many people. Today, we are undergoing an incredibly sudden slowdown in population growth, triggered by collapsing fertility rates.

References

The epigraph is from p. 205 of Robbins, L. (1963). The Robbins Report. Higher Education Report of the Committee appointed by the Prime Minister under the Chairmanship of Lord Robbins 1961-1963. London: Her Majesty's Stationery Office: education-uk.org/documents/robbins/robbins1963.html.

On page 16 of the second edition of An Essay on the Nature and Significance of Economic Science, Robbins gave a modern definition of economics as "the science which studies human behavior as a relationship between given ends and scarce means which have alternative uses." This book was originally published in 1932 and the second edition is available online at www.mises.org/books/robbinsessay2.pdf.

Walker's full report, published in 1874 by the U. S. Congress, Statistical Atlas of the United States (1870), launched his career. He went on to a series of high-profile positions, including serving as president of MIT and the American Economics Association. Walker's path-breaking atlas is available online at www.census.gov/library/publications/1874/dec/1870d.html.

10.2 Demographics Analytics

The data in PopulationPyramid.xlsm can be used to compute the male-female (M/F) birth ratio and the dependency ratio.

M/F Birth Ratio

$S T E P$ Use PopulationPyramid.xlsm (visit tiny.cc/busanalyticsexcel to download the file, if needed) to get age-distribution data for the United States in 2024. In cell E4, enter the formula: $=-C 3 / D 3$ and press enter.

The M/F birth ratio in the United States is around 1.045. If there were equal $(50 / 50)$ chances of having a boy or girl, the M/F ratio would be 1.0. Thus, we see a bias towards more boys being born than girls.

In 2024, more than two million boys and two million girls were born, but there were about 4.5% more males born. Can chance explain that deviation from equal numbers of male and female births?

No. If it was 21 boys and 20 girls or even 210 to 200, luck could explain more males than females, but 2.1 million to 2 million would almost never happen by chance.

In fact, it took a while to figure out that the M / F birth ratio is not 1.0 and the story of how this was discovered takes us to the beginning of statistical theory.

John Arbuthnot (1667-1765) was a Scottish minister and Queen Anne's doctor. He published a paper in 1710 (see references) proving, he thought, that Divine Providence, not chance, determined a baby's sex.

Arbuthnot analyzed annual data on christenings from 1629 to 1710 . In 1629, for example, there were 5,218 male and 4,683 female babies baptized. This
kept happening - each year, there were always more boys than girls.
If sex determination was controlled by chance, Arbuthnot said, then having more males than females in a year would be $50 / 50$ (like a coin flip). He used \log tables to compute the chances of getting more males than females 82 years in a row. Arbuthnot argued that the ridiculously small number he came up with meant that something beyond chance was at work. Since boys are more likely to die, an uneven start was part of a Divine Plan that would ensure an equal number of men and women for marriage.

Arbuthnot defined chance as requiring equal probability of males and females at birth, but randomness can operate with likelihoods other than 50% (like someone being a 90% free throw shooter). One thing, however, is sure: this was the world's first statistical hypothesis test. Arbuthnot is important because he posed a question involving randomness and framed it as a claim that could be tested with data.

Arbuthnot's work led to a key vital statistic: the male-female ratio at birth. The evidence soon mounted for a small, but real bias in favor of boys. Today, we know that boys are about 5% more likely than girls, but there are places around the world that deviate substantially from 1.05.
$S T E P$ Use PopulationPyramid.xlsm to find India's M/F birth ratio in 2024. This is easily done by downloading India's age-distribution for 2024 and computing the ratio of males to females at age zero.

The result is surprisingly high. What is going on? Indians (like many other cultures) have strong preferences for boys over girls. Low-cost ultrasound can easily determine sex before birth. Pregnancies with females are terminated while males are born. After birth, boys are treated much better than girls. The result is a M / F birth ratio over 1.1.

In an article in 1990 on missing women (see references), Amartya Sen, who would go on to win a Nobel Memorial Prize in Economic Sciences in 1998, pointed out that "A great many more than a hundred million women are simply not there because women are neglected compared with men." Missing women remains as important a global public health issue today as when Sen first called attention to it.

Another country that we might suspect has a high M/F birth ratio is China. In 1980, responding to fears of a population explosion, the government in-
stituted a one-child policy. As in India, ultrasound sex determination and selection for boys was quickly adopted and this increased the M/F birth ratio. But, by how much?
$S T E P$ Use PopulationPyramid.xlsm to find China's M/F birth ratio in 2010.

It is one thing to know that China's one-child policy led to more boys than girls being born, but the actual statistic, 1.17 is staggering.

There are, of course, serious social consequences for these kinds of imbalances in the population of males and females. In 2016, China rescinded its one-child policy and more recently, it is actively encouraging fertility. The problem is no longer too many people, but too few young people.
$S T E P$ set the start year to 1950 and end year to 2060 to download all available years. Get the data and click the Ratios button (under the chart). Make a chart of the M / F birth ratio.

Your chart shows that the US Census Bureau does not expect China's M/F birth ratio to remain abnormally high.

Dependency Ratio

Another demographic statistic that gives insight into societal and economic issues is the dependency ratio. It can be computed in different ways, but a common method is young plus old divided by working-age adults:

$$
\text { Dependency Ratio }=\frac{\text { Up to } 14+65 \text { and over }}{15 \text { to } 64 \text { year-olds }}
$$

The idea is that children (defined as under 15 years old) and retired people (65 years and older) do not work and depend on the labor of adults ages 15 to 64 . Obviously, this is a rough measure since many people continue to work past age 65 and not all 15 to 64 years-olds work. The ratio tries to capture the number of dependents per working-age person.
$S T E P$ If needed, download data on the United States from 1980 to 2060. Click the Ratios button.

The sheet displays M / F and dependency ratios along with the components needed to compute these ratios for each year. Instead of simply plotting the
dependency ratio, we will split the data in two parts, historical and projected.
$S T E P$ Make a Scatter with Straight Lines chart of the dependency ratio from 1980 to the present year. Copy the SERIES formula, paste it, and change the cell addresses to future years. Title the chart and label the y axis.

Your chart should look like Figure 10.5. The dependency ratio is expected to increase in the United States from its previously stable level of 0.5 to over 0.6 in the coming decades.

Figure 10.5: Rising Projected Dependency Ratio in the United States.
The dependency ratio is a function of the age-distribution of the population and is affected by two opposing forces: fertility is falling, but life expectancy is rising. We can focus on the share of elderly people by computing the old age dependency ratio:

$$
\text { Old-age Dependency Ratio }=\frac{65 \text { and over }}{15 \text { to } 64 \text { year-olds }}
$$

$S T E P$ Enter the label Old-age dependency ratio in cell O33. Enter the formula, $=$ M34/L34, in cell O34 and fill it down. Copy the chart, paste it, and edit the SERIES formula so it displays the old-age dependency ratio.

Figure 10.6 shows that the old-age dependency ratio in the United States is projected to reach 0.4 by 2060. Many other (typically rich) countries also face rapidly rising old-age dependency ratios, but none as extreme as Japan.

Figure 10.6: High Future Old-age Dependency Ratio in the United States.
$S T E P$ Download data and create dependency and old-age dependency ratio charts for Japan for all available years. What do you find?

Countries with traditional population pyramids can have high dependency ratios because there are many children, but no country has ever seen this statistic near 1.0 with low fertility. Japan's old-age dependency ratio above 0.7 in 2050 is simply staggering to contemplate.

Every country has a dependency ratio story and some can be astounding. Cuba, for instance, faces strong demographic headwinds, with shockingly low fertility and an aging population. Old-age dependency ratios are made even worse by emigration of young adults. For more, see Barreto (2018).

High old-age dependency ratios and falling fertility spell social and economic trouble for two reasons. First, resources have to be reallocated and adjusted. For example, more assisted living and senior facilities are needed, while schools have to be consolidated and reorganized for fewer students. Labor markets are also strongly affected, with less childcare needed, but more jobs for elderly services.

Second, and more important, an aging society can be a pessimistic place. Keynes (1936, Ch. 12:VII) emphasized animal spirits, "a spontaneous urge to action rather than inaction," as the driver of investment. Optimism produces high levels of investment spending. Without it, a lack of business and
consumer confidence stops economic growth.
Japan has been intensely studied because its high-flying economy in the second-half of the $20^{\text {th }}$ century has been stagnant for several decades. Thus far, no policies have worked. Its demography and the psychological effects of an aging society are undoubtedly part of the story.

A Historical Aside

It is fitting that one of the first applications of statistical logic, Arbuthnot's work on the male-female birth ratio, involved demography because counting people, births, and deaths are the most fundamental data.

Another important episode in demographic history occurred when Malthus (1798) argued that England's population was growing so explosively that there would be a catastrophe. He used simple math to make his case: humans reproduce via geometric progression, while food follows an arithmetic sequence. Malthus was wrong, but his fears gained an audience and today the word Malthusian means overcrowded and poor. Worries of a Malthusian world continue to claim our attention.

More recently, Ehrlich (1980) wrote a book with a captivating title, The Population Bomb. He argued exponential population growth would produce famine and disaster. That did not happen.

In fact, unbeknownst to Ehrlich and everyone else, there was a sudden and deep reversal at play. Fertility rates have spectacularly cratered, crashing down from extremely high levels experienced in the decades after World War II.

The problem now is not too many people, but how societies and economies can adjust to aging populations. The implications for business are tremendous. Not only investment, but innovation and entrepreneurship are impacted by the demographic tides.

Takeaways

Demography is a quantitative discipline with its own analytics. Vital statistics involve counts, ratios, and other computations of human populations.

The PopulationPyramid.xlsm workbook enables downloading years of agedistribution data which can than be displayed as a chart, but also used to compute statistics.

The M/F birth ratio is around 1.05 , but it can be deviate substantially from that in particular places and times.

Dependency ratios give information on the structure of the age-distribution. Old-age dependency ratios are expected to rise substantially in almost every country as people live longer and fertility is much lower.

It is easy to think that the impact of an aging population involves mechanical adjustment in capital and labor resources, but the psychological effects are much more important.

You might think it odd to include demography in a book on business analytics, but there is no doubt that the study of human populations, their age-distribution, and movement are critical to economics, finance, and business.

There is a hidden sheet in the PopulationPyramid.xlsm workbook. Do the last step in this book to see a population pyramid of college graduates in the United States.
$S T E P$ Right-click any sheet tab and select Unhide. Select PopPyrCollege to reveal the sheet.

The red bar for 25 -year olds (the lowest bar) is longer than the blue bar. This shows there are more female than male 25 -year old college grads. The ratio, 0.8 , is quite low, don't you think? What are the implications of this?

References

Arbuthnot, J. (1710) "An Argument for Divine Providence, taken from the Constant Regularity observed in the Births of both Sexes." www.york.ac.uk/ depts/maths/histstat/arbuthnot.pdf.

Barreto, H. (2018) "Cuban Demography and Economic Consequences" Working Papers 2018-01, DePauw University, School of Business and Leadership and Department of Economics and Management. ideas.repec.org/p/dew/
wpaper/2018-01.html.
Ehrlich, P. (1968, $1^{\text {st }}$ ed.) The population bomb. New York, NY: Ballantine Books. www.google.com/search?q=ehrlich+population+bomb.

Keynes, J. M. (1936) The General Theory of Employment, Interest and Money. www.marxists.org/reference/subject/economics/keynes/general-theory.

Malthus, R. (1798, $1^{\text {st }}$ ed.) An Essay on the Principle of Population. oll.liberty fund.org/titles/malthus-an-essay-on-the-principle-of-population-1798-1st-ed Sen, A. (1990) "More Than 100 Million Women Are Missing," New York Review of Books (December 20, 1990). www.nybooks.com/articles/1990/12/20/ more-than-100-million-women-are-missing.

Gateway to Business Analytics with Microsoft Excel ${ }^{\circledR}$

Actual URL: www.depauw.edu/site/learn/econexcel/busanalytics
Shortcut: tiny.cc/busanalyticsexcel
This text uses Microsoft Excel ${ }^{(R)}$ to deliver a sampling of topics in Business Analytics as introduction to the field. There are no prerequisites and the target audience is first- or second-year undergraduate students who have used a spreadsheet before, but have no specialized training in Excel, calculus, statistics, or programming.

Readers acquire sophisticated Excel skills and a solid foundation for further work in Business Analytics. With concrete examples, novel applications, and eye-catching visualizations, engagement is guaranteed as the user creates spreadsheets, manipulates live graphs, and analyzes data.

Humberto Barreto is Professor of Business at DePauw University. He earned his Ph.D. from the University of North Carolina at Chapel Hill. Professor Barreto has lectured around the world on teaching economics with computerbased methods, including Cuba, Brazil, Canada, Scotland, Spain, Poland, India, Myanmar, Japan, and Taiwan. He was a Fulbright Scholar in the Dominican Republic and has taught National Science Foundation (NSF) Chautauqua short courses using simulation. He has received several research and teaching awards. His book, The Entrepreneur in Microeconomic Theory, was translated into Arabic in 1999. He has written numerous articles and books on using Excel to teach economics (including introductory level material, micro, macro and econometrics). He offers an annual workshop for faculty on teaching economics. Visit his Teaching Economics with Excel website for more information: www.depauw.edu/learn/econexcel.

