
The most powerful force in the
universe is compound interest.

attributed to Albert Einstein

Growth Math

The learning objective is straightforward to state, but difficult to accomplish:
a deep appreciation of the power of compounding. You want to go beyond
the simple mechanics of growth and truly grasp the nature of the force un-
leashed by exponential growth.

In addition, there are two subgoals:

1. Measuring growth via the CAGR, the compound annual growth rate.

2. Understanding and using the Rule of 70.

A Race

We are going to pit an arithmetic against a geometric sequence (or progres-
sion). This is not a mystery so we will reveal right now that the geometric
sequence will win. Be on the lookout, however, for some surprising results.

An arithmetic sequence is a list of numbers with a common difference be-
tween each term. The sequence 4, 9, 14, 19, 24 is an arithmetic sequence
with 5 as the difference.

Instead of a constant additive increase, a geometric sequence progresses by
applying a multiplicative constant to each term. So, 4, 8, 16, 32 is a geomet-
ric sequence with 2 as the multiplier. Notice that doubling is a 100% increase.

Starting from 4, it is easy to see that doubling beats adding 5 pretty quickly—by
the third term. But what if we made it really uneven in choosing the additive
and multiplicative constants?
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Starting with $1, what if you got $1,000,000 more every day versus a 10%
per day increase? We will use Excel to run this race.

Let’s agree that the arithmetic sequence is going to jump out to a big lead.
After two days, it has $2,000,001 while the geometric sequence will have
$1.21. But what happens as time goes by?

STEP Save a blank Excel workbook as Growth.xlsx and enter the la-
bels in row 2 as shown in Figure 4.1. In cells B1 and C1, enter the values
$1000000 and 10% (including the $ and %) and name the cells x and i (for
interest rate). Use Excel’s Help or the web if needed to name the cells and
widen column B until the value is visible.

EXCEL TIP Naming cells improves presentation and makes your
implementation easier to follow. Using natural language text in formulas
instead of cell addresses requires more setup time, but the improvement in
readability of formulas is well worth the effort.

STEP Enter 0 and 1 in cells A3 and A4, respectively, then select both
cells, click the bottom-right corner of cell A4, and drag down to cell A50. In
cell B3, enter $1 and in cell B4 enter the formula =B3+x. Select cell B4 and
double-click at the bottom-right corner to fill it down. Enter $1 in cell C3
and the formula =(1+i)*C3 in cell C4. Fill it down.

Figure 4.1: Setting Up the Race.

The formula in column C is produced by this algebraic simplification of the
way the next term is produced in a geometric sequence:
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xt+1 = xt + ixt

xt+1 = (1 + i)xt

STEP Widen columns B and C to make sure the numbers are visible
in row 50. It is obvious that $1M per day is way ahead of 10% per day, but
let’s make a chart to show how far ahead the arithmetic sequence is—select
cell range A2:C50 and insert a Scatter chart. Give it a title (you can use
Racing Sequences), label the x axis (Day would work), and insert text boxes
without fills or outlines to label the two series.

Your chart has a line with a slope of $1M and what appears to be another line
(the geometric sequence) on the x axis. The values of the geometric sequence
are so small, you cannot tell that it is actually a curve. What happens if we
extend the sequence?

STEP Select cells A50:C50, click the bottom-right corner of cell C50
and drag down to row 153. Widen column C to see the values and decrease
the decimal places so only integer dollar values are displayed to make it easier
to compare columns B and C.

After 150 days, the arithmetic sequence is still way ahead,roughly $150M to
$1.6M, but we can see that the geometric sequence is starting to really gather
momentum.

STEP Extend the sequences to row 253.

After 250 days, the geometric sequence is almost 100 times bigger—almost
$25 billion compared to $250 million. When did the geometric pass the arith-
metic sequence?

STEP Scroll back up to the top of the sheet, enter the label Difference
in cell D2 and the formula = C3 - B3 in cell D3. Double-click the bottom-
right corner of cell D3 to fill it down. Scroll down and widen column D as
needed as you scroll.

You will see that the parentheses (indicating negative numbers) stop on day
201. That is the day the geometric sequence won the race and its lead will
grow wider, ever faster, from then on.
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STEP Scroll back up and edit the SERIES formulas in the chart.
Change the row numbers to 213 so that the formula for SERIES 1 looks
like this:
=SERIES(Sheet1!$B$2,Sheet1!$A$3:$A$213,Sheet1!$B$3:$B$213,1)
Do the same for the second series.

Figure 4.2 shows what your chart should look like. Do not be misled into
thinking that the geometric sequence was not growing at first and then
started growing really fast around day 150. In fact, it grew at the same
rate, 10%, every single day. Another mistake is to see every curve as having
constant growth—do not fall into this trap.

Figure 4.2: The Geometric Sequence Wins!

One quick way to check if a curve is growing at a constant rate is to make
the y axis a log scale.

STEP Click on the y axis (the $ values) and check the Logarithmic scale
box in the Axis Options on the right of your screen.

The chart dramatically changes. The curve becomes a line and the line a
curve. The fact that a log scale linearizes the curve means the curve is grow-
ing at a constant rate.

Now, you might think that we are at the surprising result mentioned at the
beginning. After all, it is pretty impressive that 10% per day, after starting
so incredibly far behind and falling even farther behind, overtakes $1M per
day, but no, that is not it.
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The big surprise is actually that it does not matter what (positive) numbers
you pick for the constant difference and multiplicative factor, the geometric
will always eventually beat the arithmetic sequence.

Let’s be clear about this. You can make the constant difference as big as
you want and the multiplicative factor as little as you want (as long as it is
positive) and the geometric progression will eventually win the race. That is
shocking and reveals the force embedded in compounding.

You could argue that this is expected because multiplication is more pow-
erful than addition and that is a true statement, but Figure 4.2 hints at
another way to remember why geometric progressions are so powerful—they
are curves instead of lines. Eventually, if they start from the same point and
are both increasing, a curve will always pass a line.

You have undoubtedly heard about the power of compounding and it is true
that compounding is an incredibly important concept in business. You want,
however, to have a deep appreciation of the idea that compounding over long
periods of time will produce remarkable results.

STEP Just to be sure and to give you another wow moment, reduce the
multiplicative constant in cell C1 to 1%. Will growing at 1% per day catch
and beat $1,000,000 per day? Amazingly, yes, you know it will, but when?
Find the day the geometric sequence beats the arithmetic one. The answer
is in the appendix.

CAGR

We can measure the rate of growth between any two points by using a for-
mula called the compound annual growth rate, CAGR. The word annual is
used because it is often applied to yearly data, but we can apply the CAGR
to the daily frequency in the race we just ran. Instead of just stating the
formula, it is worth seeing where it comes from.

We know that a geometric sequence is generated by adding a constant multi-
plicative factor (i) times the previous amount. Here are the first few terms,
where x0 is the initial value, x1 is the next value, and so on.

5



x1 = x0 + ix0 = (1 + i)x0

x2 = x1 + ix1 = (1 + i)x1

x3 = x2 + ix2 = (1 + i)x2

The subscript tells us the time period, with zero meaning right now. The
last equation above says the value of x in time period 3 equals the previous
value of x plus the rate of growth times the previous value. The value of x in
time period 3 also can be expressed as (1+i) times the value in time period 2.

We can rewrite x2 by substituting in the formula for x1 like this:

x2 = (1 + i)x1 = (1 + i)(1 + i)x0 = (1 + i)2x0

We can do the same for x3:

x3 = (1 + i)x2 = (1 + i)(1 + i)(1 + i)x0 = (1 + i)3x0

In fact, we could do this for any value in the sequence after the initial value:

xt = (1 + i)xt−1 = (1 + i)tx0

The equation above says that starting from an initial value, x0, the value of x
at time t, xt, will be (1 + i)t times the initial value. We do not have to know
the previous value to get the next value. All we need is the initial value, the
rate of growth, i, and the number of time periods.

Since this equation expresses where every point will be in the sequence, we
can solve for i like this:

xt = (1 + i)tx0

xt

x0

= (1 + i)t

[
xt

x0

]1/t = 1 + i

[
xt

x0

]1/t − 1 = i

i = [
xt

x0

]1/t − 1
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The last equation is the CAGR. We can write it in a more user-friendly way:

i = [
xt

x0

]1/t − 1

CAGR = [
Final Value

Initial Value
]1/Number of Time Periods − 1

Given any two numbers and the number of time periods, the CAGR tells
us what the rate of growth must be if the numbers are part of a geometric
sequence. Let’s put this formula to work.

STEP Label cell E1 as CAGR and enter the formula =(C9/C3)ˆ(1/6)-1
in cell E2.

You calculated the rate of growth from the initial value of $1 at t = 0 to the
value in the 6th time period and this will equal the rate of growth in cell C1.

Be careful with the number of time periods in the CAGR formula. From
t = 0 to t = 6 and from cells C3 to C9 there are seven numbers, not six.
The number of periods is always one less than the number of values in the
sequence. The number of time periods, t, is the amount of time that has
elapsed since the start. For a length of one unit of time, you need two num-
bers, beginning and end.

STEP Modify your formula in cell E2 to compute the CAGR from time
period 5 to 10. You will know you have it right if cell E2 equals cell C1.

Of course, we constructed the geometric sequence in column C so we know
the rate of growth. What if we did not know the rate of growth and had only
beginning and ending values?

STEP Click on an empty cell and compute the CAGR from an initial
value of 11.7 in t = 0 to 23.1652 in t = 14.

The correct formula is =(23.1652/11.7)ˆ(1/14)-1 and Excel should be dis-
playing 0.05. Notice that we do not need to know the numbers in the in-
tervening time periods. If it is a geometric sequence, that is, growing at a
constant rate, then we could compute the value at any time period using the
generating equation, xt = (1 + i)tx0.

Let’s show that values between initial and final are irrelevant and introduce
another measure of growth, the average annual percentage change (AAPC).
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STEP Insert a new sheet and enter the formula =RAND()*1 in cell
A1, =RAND()*2 in cell A2, and =RAND() times 3, 4, and 5 in cells A3,
A4, and A5. Make a graph by selecting range A1:A5 and inserting a Scatter
chart. Press F9 (you may have to use the fn key on your keyboard) a few
times to recalculate the sheet.

Even though the values do not grow at a constant rate, we can compute the
CAGR from A1 to A5.

STEP Label cell A6 CAGR and, in cell A7, enter the formula to com-
pute it from A1 to A5.

The formula you entered (to be sure: =(A5/A1)ˆ(1/4)-1 ) ignores the three
points in between the first and last points. The CAGR assumes that a con-
stant growth curve connects the first and last points.

There is another common measure of growth that does use all of the points,
the average annual percent change.

STEP In cell B2, enter the formula =(A2-A1)/A1 and fill it down.

Column B has the percentage changes from one year to the next. The aver-
age annual percent change takes the average of the percentage changes.

STEP Label cell B6 AAPC and enter the formula =AVERAGE(B2:B5)
in cell B7. Press F9 a few times.

It is clear that the two measures are different. The CAGR answers a specific
question: what is the constant rate of growth that would need to be applied
to the initial value so that we end up at the final value? The AAPC does
not have the property that applying the growth rate to the first value pro-
duces the last value. The AAPC is just an average of the annual percentage
changes.

In fact, there are many more ways to measure growth than CAGR and AAPC,
but these are the two most common ones. And, there are many more aver-
ages than the usual one. There is one called the geometric mean (mean and
average are synonyms). Instead of adding the values and dividing by n (the
number of values), you multiply them and then take the 1

n
th root.

8



STEP Enter the formula =A2/A1 in cell E2. Fill it down to E5. In
cell E6, enter the formula =(E2*E3*E4*E5)ˆ(1/4).

This is the geometric mean of the ratios in cells E2:E5. There is an easier
way: use Excel’s GEOMEAN function.

STEP In cell E7, enter the formula =GEOMEAN(E2:E5). Confirm
cells E6 and E7 are equal.

You probably have not noticed, but there is an important discovery at hand.

STEP In cell E8, subtract 1 from the geometric mean in cell E6 or E7
(since they are the same).

Do you see it? Look carefully at cells A7 and E8—the CAGR and geometric
mean of the ratios minus 1 are the same! That is striking.

The geometric mean has applications when the data generated come from a
geometric sequence. For example, if an investment is growing at a constant
percentage, we might use the geometric mean because, like the CAGR, it has
the property that the growth rate applied to the initial value will equal the
final value.

The Rule of 70

The growth rate of a geometric sequence can be used to determine the time
needed to double. We use the generating equation, but this time we know
we want the initial value to double and we want to solve for t :

xt = (1 + i)tx0

2x0 = (1 + i)tx0

2 = (1 + i)t

With t as an exponent, we face a challenge in solving for t. The path forward
involves the logarithm, which is the inverse of exponentiation. We can take
the natural log, ln, of both sides to solve for t :
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2 = (1 + i)t

ln(2) = tln(1 + i)

ln(2)

ln(1 + i)
= t

t =
ln(2)

ln(1 + i)

We can use this formula to find the exact time it will take a geometric se-
quence to double. If the growth rate is 10% per time period, we plug that
into the formula and compute it.

STEP Return to the sheet where you raced the sequences and set cell
C1 to 10%. In cell G1, enter the label Exact Time to Double. In cell G2,
enter the formula =LN(2)/LN(1+i).

You used Excel’s natural log function, LN(), to compute that it will take a
little over 7.2725 time periods for a geometric sequence growing at 10% to
double.

Since the exact answer cannot be easily computed, an approximation is often
used. It relies on the fact that ln(1 + x) ≈ x.

STEP In cell G3, enter the formula =LN(1+i).

With i = 10%, ln(1 + i) is almost 0.1, confirming the fact. In addition, ln(2)
is roughly 0.693, or rounded to two decimal places, 0.70. This means we can
approximate the exact answer like this:

t =
ln(2)

ln(1 + i)

t ≈ 0.7

i

We have derived the the Rule of 70, an approximation which can we write in
a more friendly way like this:

Time to Double =
70

Growth Rate (in percentage)
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If the growth rate is 10% per day, the Rule of 70 says it will take 70 divided
by 10 or 7 time periods to double. This is not exactly true. The exact time
to double is displayed by cell G2, but it is reasonably close.

STEP With cell C1 at 10%, notice that the initial value of $1 almost
doubles by the 7th day and almost doubles again (to $4) by the 14th day.

We can try a different growth rate to see if the Rule of 70 works again. At 2%
per day, the Rule of 70 says it will take about 35 days to double. Is this true?

STEP Change cell C1 to 2%. Did the Rule of 70 work?

Yes, cell G2 shows it will take just a little longer than 35 days to double at
2%. Also, the value in column C is $2 at t=35 and if you scroll down, you
will see that it is $4 at t=70. It really does double almost every 35 days with
a 2% per day growth rate.

STEP Set cell C1 70% and look at the values in column C.

The Rule of 70 is not doing well here. It is not true that we get doubling
every year. This shows that the Rule of 70 works for “small” growth rates
and the smaller, the better the approximation.

There is also the Rule of 72 which is a slightly worse approximation to ln(2) ≈
0.693, but has more divisors than the Rule of 70.

Growth Numeracy

Today’s world population is roughly 8 billion, but humans started with small
numbers and expanded. Galor (2022, p. 46) says,

At the eve of the Neolithic Revolution [the birth of agriculture],
in the year 10,000 BCE, an estimated 2.4 million human beings
roamed the earth. Yet, by the year 1 CE, as the Roman Empire
and the Mayan civilization approached their height, the world’s
population had multiplied seventy-eight fold and soared to 188
million.

Generative AI exploded in the public’s consciousness in November 2022 when
OpenAI released its latest version of ChatGPT. This was followed by many
competitors. As part of my exploration and interaction with these new tools,
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I repeatedly tried to get various AIs to compute the CAGR for the increase
in human population from 2.4 to 188 million over 10,000 years. Figure 4.3
shows one answer from ChatGPT 3.5 (free version) on June 7, 2023.

Figure 4.3: ChatGPT 3.5 computing CAGR.

The AIs always do a good job of explaining how to do the problem, but
sometimes give ridiculous answers. For example, the steps in Figure 4.3 are
correct, but the final answer is nonsensical. At 3% per year, the Rule of 70
says there will be doubling around every 25 years. That would be 16 times
in 100 years. We pass 78-fold before 200 years.

A moment’s reflection shows that a 3% growth rate over such a long period
of time is going to produce a huge number. How huge? Excel says 1.03 to the
10000th power is 2 × 10128. Today’s world population of 8 billion is 8 × 109

so ChatGPT’s answer is not in the ballpark.

STEP Use Excel to compute the CAGR for Galor’s numbers: initial
value of 2.4 and final value of 188 over 10,000 years. You can use ChatGPT’s
CAGR formula in Figure 4.3 since it did get that right.
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In fact, the CAGR is tiny, about 0.000436. Rounding roughly to 0.0005, that
is 0.05% and the Rule of 70 would give doubling every 1,400 years. Now that
CAGR makes sense.

Lesson: Never trust generative AI with a mathematical computation. More
broadly, never trust any fact produced by an AI. Always check its claims.

ChatGPT 4 (the paid version in 2023) with a Mathematica plugin gets the
CAGR computation right. But I still check every number it produces. AI
will undoubtedly get better, but I will remain skeptical of any factual claim
it makes. You should also.

As a final example, Poundstone (2016, p. 211) asked this survey question:
Suppose you put $1,000 in a tax-free account that earns 7 percent per year
on this investment. How many years will it take to double your original
investment, to $2,000?

1. Between 0 and 5 years

2. Between 5 and 15 years

3. Between 15 and 45 years

4. More than 45 years

Only 59% got it right. The Rule of 70 gives 10 years so the correct answer
is between 5 and 15 years. It cannot be 0 to 5 since 7% of $1,000 is $70. So,
$1,070 next year, $1,147 year 2, and there’s no way it reaches $2,000 in five
years. Likewise, 15 to 45 and more than 45 are obviously wrong since $70
per year (ignoring compounding) times 30 years is over $2,000.

More importantly, those getting the correct answer “reported $32,000 more
personal annual income, more than twice as much in savings, and rated
themselves 15 percent happier” (Poundstone, 2016, p. 212). Maybe being
numerate has its advantages.

Takeaways

In everyday English, exponential means really fast. In math, it means there
is an exponent involved. Geometric sequences are exponential because they
can be written with a generating equation like this: xt = (1 + i)tx0.
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Geometric sequences are much more powerful than arithmetic sequences,
especially over a long time period. It is hard to believe, but true that a
geometric will always surpass an arithmetic sequence, no matter the positive
constants used.

Mathematicians usually stress the multiplicative nature of geometric se-
quences to explain their power, but it is also true that, starting from the
same place and pointing up, a curve will always eventually pass a line.

We compute the compound annual growth rate with this formula:

CAGR = [
Final Value

Initial Value
]1/Number of Time Periods − 1

The geometric mean (Excel function GEOMEAN()) is another way to com-
pute the CAGR.

The Rule of 70 is mental math. You can quickly roughly compute how long
it will take to double by dividing 70 by the growth rate. You can use the
Rule of 70 to check a computed growth rate for reasonableness.

The mathematics of how things grow, CAGR, geometric mean, and the Rule
of 70 are all part of being numerate. We apply these ideas to economic
growth in the next section.
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Appendix

A geometric sequence with a growth rate of 1% per day will pass an arithmetic
sequence with a constant difference of $1M on day 2,161. Yes, that is roughly
10 times longer than it takes the geometric progression growing at 10% per
day. And, yes, if you tried 0.1%, it would take 10 times longer. But no
matter how small you make the growth rate or how big you make the constant
difference, eventually, the geometric sequence wins!
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