
Once you become acquainted with
VBA, you’ll wonder how you ever
got along without it.

Reed Jacobson

Introduction to VBA

You have learned many new Excel functions, created a variety of different
charts in Excel, and used Solver, Comparative Statics Wizard, Monte Carlo
simulation, and FRED Excel add-ins. But those are all frontend Excel skills.

For computer scientists, the frontend is the presentation layer or the user
interface of software. The frontend is that part of the restaurant where the
diner sits down and orders food.

The backend of a restaurant is the kitchen where the meal is actually made.
Excel’s backend is built on a computer language called Visual Basic. Excel
and other Office products such as Word and PowerPoint run a version called
Visual Basic Applications edition or VBA, for short.

It is in VBA that we write code, also known as macros, to perform especially
complicated tasks. The code is written and stored in modules. The resulting
Excel workbook is a combination of spreadsheets and modules that must be
saved as a macro-enabled workbook with extension .xlsm. Without macros,
an Excel spreadsheet has file extension .xlsx.

EXCEL TIP Excel warns you if you save a workbook with macros
as a simple Excel workbook (.xlsx). If you ignore the warning, it will simply
save the workbook without the macros and your code will be lost.

There is no question that a macro-enabled workbook is more powerful than
a simple spreadsheet, but this power comes at a cost. Not only do you have
to know how to write code in VBA, but your end-user will probably have
to enable macros when opening the file. Sometimes, security settings in a
particular installation of Excel are set so high that the macros will not be
allowed to run. The user has to change Excel’s settings, adding another layer
of difficulty, just to open the file.

1



EXCEL TIP If you can accomplish a task without macros, always
do so. Sometimes, however, VBA is the only solution.

Hello, World!

It is a tradition in computer science to introduce a new language by out-
putting “Hello, World!” Let’s do it.

STEP Open Excel and save the file as IntroVBA.xlsm, making sure to
save it as a macro-enabled workbook with the .xlsm extension by clicking the

Save as type in the save window and choosing .xlsm. Click the Visual Basic
button in the Developer tab in the Ribbon. If the Developer tab is not visible,
press alt, f, t and click Customize Ribbon, then check Developer in the list.
You can also access Vosual Basic by pressing alt-F11 (you may need to use
the function (fn) key) or right-clicking the sheet tab and selecting View Code.

You have a new window on your screen with a lot of things you have never
seen before. Welcome to Excel’s kitchen! You are in the Visual Basic Editor
(VBE).

Across the top there is a familiar menu of items. The top-left panel should
be the Project Explorer (press ctrl-r if you do not see it). You may also see
other panels.

STEP In the Project Explorer panel, scroll, if needed, to find your
IntroVBA.xlsm workbook (it will be in parentheses after VBAProject), and
select it (highlighted in blue). Click Insert in the top menu and select Module.

You now see a blank window. This is where you will write your code. Notice
also that your workbook in the Project Explorer panel now has a new com-
ponent, the module you just inserted.

STEP The cursor should be blinking in the blank window, but if not,
click in the window. Enter the text sub myfirstmacro and press enter.

The text is transformed. The S is capitalized and Sub is in blue, parentheses
have been appended, and a new line End Sub has been added. Apparently,
VBE is a high-level editor with a great deal of support.

2



Sub stands for subroutine, a set of instructions or lines of code. The state-
ments between the Sub and End Sub lines are the body of the macro. You
could pass arguments to your Sub by entering them in the () on the first line.

STEP In the middle line (where the cursor is blinking), enter the text
msgbox “Hello, World!” and press enter.

As you entered the text, you undoubtedly noticed the yellow pop-up show-
ing the various options for the MsgBox object. This shows again the strong
support offered in the editor in the VBA environment. Also, this example
reveals that VBA is an object-oriented programming language. We write
code to apply different methods and options to the objects.

We have finished our first macro and are ready to run it.

STEP Click Run in the top menu and select Run Sub/User Firm (or
press F5).

You did it! You are returned to the Excel spreadsheet and it displays a mes-
sage box with “Hello, World!” on it.

This is exciting, but how can we run the macro from the spreadsheet?

STEP Press OK to close the message box and click the Developer tab.

Click the Insert button and select the top-left Button icon. Click and drag
in the spreadsheet to create a button. In the AssignMacro dialog box, select
myfirstmacro and click OK. Click on an empty cell in the spreadsheet.

You have added a button to the spreadsheet and attached a macro to it.
When you click the button, the macro will run. Try it.

STEP Click the button to see the message box pop up.

Now the user does not have to know how to run macros in VBA. By attach-
ing the macro to the button, you have made it easy for the user to run your
code.

EXCEL TIP Regular (left) clicks enable you to use objects in
Excel. Right-clicks select objects so that you can modify them.

3



STEP Right-click your button and replace the Button 1 text with Click
Me. Click the button to see that it works.

This shows that the caption of the button can be different from the name of
the macro.

We used scroll bar and combo box controls earlier, but they were not macro-
enabled. By assigning macros to controls, we greatly expand the power of
Excel.

Recording Macros

VBA is hard at first because beginning users do not know any of the objects
or commands. It is like learning a new spoken language, you know the words
exist for what you want to say, but you do not know what they are.

One way to start growing your VBA vocabulary is by recording macros. You
turn on the recorder and do things in Excel, then examine the recorded code
in VBA.

STEP Click the Developer tab and click the Record Macro button.
Click OK in the pop up dialog box. Select cell A1 and enter 100. Make

the formatting $. Click the Stop Recording button. Press alt-F11 to go to

VBA.

There is a new module sheet in your VBA project.

STEP Double-click Module2 in the Project Explorer panel.

You are looking at the code needed to do the steps you did in Excel. You
now know that Selection.Style = “Currency” applies currency formatting to
the selected cell.

STEP Change the 100 in the recorded macro to 0.1 and change Cur-
rency to Percent. Return to Excel by pressing alt-F11 (this toggles you
between Excel and VBA). Right-click your button and select AssignMacro.
Choose Macro1 (that you just recorded and edited) and click OK. Click an
empty cell in the spreadsheet and click your button.

4



Your macro changed A1 to 0.1 and formatted it as percent! This demon-
strates that you can definitely control Excel from VBA.

This example shows how you can record a macro to reveal the code needed
to perform a task in Excel. The usual procedure is to record a series of steps
and then edit the code, removing superfluous lines and changing values or
other attributes.

STEP Use the macro recorder to write a macro that takes a random
number from a cell and pastes its value in the cell below it. Assign your
macro to your button and click the button to run it. If you need help, see
the appendix.

Takeaways

In the late 20th century, Excel was in a race with other spreadsheets that you
have never heard of because Excel completely overwhelmed them. In 1993,
Excel 5.0 debuted with VBA and Microsoft crushed the competition.

VBA is an implementation of Visual Basic that runs within Excel. Macros
are written in VBA in modules and then assigned to controls (such as but-
tons) on the spreadsheet.

If you want to continue learning about VBA, Jacobson’s Step-by-Step book
is a great place to start. The files needed were originally on a CD (an older
technology that could store “huge” amounts of data), but they are available
for download at tiny.cc/hbvba.

You can also look at open-source VBA code. For example, the Comparative
Statics Wizard and Monte Carlo simulation add-ins are freely accessible. So
are the macro-enabled workbooks we have used. You can open their modules
and inspect the code to learn VBA.

References

The epigraph is from the first chapter of Reed Jacobson’s Microsoft Office
Excel 2007 Visual Basic for Applications Step by Step (Pearson Education)
Kindle Edition. This book is out of print, but there are many copies available
and it remains a great way to learn how to write macros in Excel.

5

http://tiny.cc/hbvba


Appendix

STEP Click the Record Macro button and enter the formula =RAND()
in a cell. Copy the cell, select another cell, and Paste Special as Values. Stop
recording and go to VBA. The body of your recorded macro (the code be-
tween the Sub and End Sub lines) should look something like this:

’

’ Macro3 Macro

’

’

Range("A3").Select

ActiveCell.FormulaR1C1 = "=RAND()"

Range("A3").Select

Selection.Copy

Range("A4").Select

Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, _

SkipBlanks :=False, Transpose:=False

Range("A5").Select\\

These lines are the actual commands you gave Excel. Notice that an apos-
trophe at the start of a line comments out that line (it is not executed) and
is displayed in green-colored text (e.g., the line Macro3 Macro). The under-
score character, , continues the current statement on the next line.

You could clean up this code so it looks like this:

Range("A3").FormulaR1C1 = "=RAND()"

Range("A3").Copy

Range("A4").PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, _

SkipBlanks:=False, Transpose:=False

Range("A5").Select

You could comment out the first line and it would still work since the RAND()
function is already in cell A3. Running this macro replaces the contents of
cell A3 without any warning. You do not notice this because the code writes
the same formula that was there.

6


	Introduction to VBA

