Functions in VBA

Attaching a macro to a button or other object allows you and your users

to run VBA code, but there is another way to access code from an Excel
workbook: a user-defined function (UDF).

Unlike a native function, like =RAND() or =SUM(cell range), which is part
of the Excel application itself, UDFs are functions that you write in VBA
and are stored in a module in a macro-enabled workbook (filename extension
xlsm).

To the user, UDFs work the same as native functions, so they require no
special knowledge. The only extra step is that the user has to enable the
content in the workbook (or disable all security, which is not recommended).

To demonstrate how UDFs work, we will create two user-defined functions,
the first without any arguments and the second will allow the user to pass
information to the function, making it more flexible and useful.

UDF with No Arguments

Recall from our work on Monte Carlo simulation that we can create a 90%
free throw shooter in Excel with the formula, =IF(RAND()<0.9,1,0). Alter-
natively, we could create a function in VBA, say FT(), that the user could
enter in any cell. Ninety percent of the time it would produce a 1 and the
remaining ten percent would be 0.

S TEP Open your IntroVBA.zlsm macro-enabled workbook and press
alt-F11 to go to Visual Basic. Insert a new module sheet in this workbook.
Type the text function FT() (uppercase FT) and hit enter.

1



Excel’s Visual Basic Editor capitalizes the F in function, adds an End Func-
tion for you, and colors the text blue for the beginning and ending lines of
the code.

Instead of the Excel function =RAND(), VBA has its own random number
generator Rnd. It produces random numbers in the interval from 0 to 1. It
is super easy to make our UDF output a random number.

S TEP Enter the text FT = Rnd and press enter. Return to Excel (alt-
F11 is a toggle) and click on cell H1. Enter the function =FT() and press
enter.

Congratulations! You just wrote your first function in Excel and accessed it
from Excel.

For UDF's, Excel remembers how you first entered the
function. If you enter =ft() (lowercase), it will keep using lowercase (even if

you enter F'T in a different cell). This is not true for native functions: enter
=rand() and Excel converts it to =RAND().

There is, however, a problem with our UDF.

S TEP Press F9 a few times. Nothing happens to cell H1. It is not
bouncing like RAND(), generating a new random number each time we re-
calculate the sheet.

The problem is that UDF's, by default, are non-volatile functions. This means
they do not get recalculated unless they depend on other cells that have
changed. We must add code to make our function recalculate when F9 is
pressed.

S TEP Return to your VBA code for the FT function. Click on the top
line, after the close parenthesis and press enter so that you are on a new,
blank line and enter the text Application. Volatile True. Press enter. Return
to Excel and press F9 a few times. Success!

But we do not want to simply output a random number, we want to see if
we made (1) or missed (0) a free throw attempt. We need to add some code
to do this. Like the Excel formula we used to model a free throw result, we
need an If statement to separate made from missed free throws.



S TEP Go to the FT code. Click after True and press enter to create a
new line after the volatile statement. Enter the text if rnd < 0.9 then and
press enter.

As usual, the editor capitalizes and colors the text for you. The next line
of code defines what happens if the random number is less than 0.9. It is
followed by lines of code for missed free throws.

STEP Press the tab key to indent, type the text F'T" = 1, and press
enter. Type the word Else and press enter. Press tab, type FT = 0, and
press enter. Type end if and press enter. Put an apostrophe (’) in front of
the FT=Rnd line to comment it out (so it does not get executed).

Your masterpiece of code should look like this (with color added to keywords
and lines):

Function FT()
Application.Volatile True
If Rnd < 0.9 Then

FT =1
Else

FT =0
End If
’FT = Rnd

End Function

The macro draws a uniformly distributed random number on the interval
from 0 to 1 (Rnd) and if it is less than 0.9 it goes to the F'T' = 1 line. Since
the function is called F'T) it outputs the number 1 if Rnd < 0.9. If the random
number drawn is not less than 0.9, it goes to the F'T" = (0 line and outputs a 0.

The code is easy to read, but does it actually work? Let’s find out.

S TEP Return to Excel, fill cell H1 down to cell H10 and press F9 a few

times.

That is pretty cool, but what if we wanted a more generalized version, where
the user tells us the chances of success?



UDF with an Argument

In native Excel functions, like SUM, for example, the arguments are passed
in the parentheses: SUM(A1:A3). UDFs work the same way. We will add
an argument to our code in the parentheses and modify the code to enable
it to incorporate the information provided by the user.

S TEP Copy the FT code and paste it below the End Function line.
Since you cannot have two functions with the same name, change the name
of the newly pasted function to FTARG (for argument). In the parentheses,
type the text Shoot as Double. Replace the 0.9 in the If statement line with
Shoot. Return to Excel and enter the formula =FTARG(0.5) in cell I1.

Excel displays an error message in cell 1. Can you figure out what is wrong
with the UDF and fix it? If you cannot, take a look at the appendix.

We can make the function even more flexible by having it accept a value in
another cell.

STEP Copy the FTARG code and paste it below the End Function line.
Change the name of the newly pasted function to FTARGCELL (for argu-
ment from another cell). In the parentheses, change the text to myShootCell
as Range. Replace Shoot in the If statement line with myShootCell. Value.
Change the FTARG = 1 and FTARG = 0 lines to FTARGCELL = 1 and
FTARGCELL = 0. Return to Excel and enter the formula =FTARGCELL(K 1)
in cell J1. Fill it down to cell J10. In cell K1, enter a number from 0 to 1,
such as 0.25. Press F9 a few times.

With a 25% chance of success, your ten numbers in column J are bouncing
around every time you press F9 and you usually get 2 or 3 ones.

Is it better to allow the user to input a number as the argument or a cell
address? That depends on the context of the problem, including the user’s
familiarity with Excel. In fact, if you do not need to change the success rate,
our original UDF, FT(), might be the best choice.



Takeaways

VBA code can be accessed by users from Excel’s front-end by attaching
macros to buttons and other controls.

Another option is a user-defined function or UDF. The user enters a formula
that runs the UDF code to do computations or other manipulations that are
not available in native Excel functions.

Like native Excel functions, UDFs usually require arguments. These vari-
ables are declared in the Function statement, inside the parentheses.

Writing code is science and art. Deciding whether arguments are needed
and, if so, how to pass them (numbers or cell addresses, for example) re-
quires knowledge of what needs to be done and who is going to do it. You
need to know your audience.

Most people think of Excel as some kind of sophisticated adding machine
or calculator. Excel can certainly do arithmetic and other mathematical
operations, but its back-end or kitchen opens up a whole new world of op-
portunities and possibilities.

Appendix

The FTARG function fails when you change the name of the function to
FTARG, but do not likewise update the name of the function in the code.
You must change the FT = I line to FTARG = 1 and the FT = 0 line to
FTARG = 0.

When you write a UDF, you always use the function name to output a
result. If you need more than one cell to output results, you can use an array
function.



	Introduction to VBA

