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Abstract:  This econometrics pedagogy paper demonstrates the importance of using cluster 

standard errors with data generated from complex surveys. Simulation is used to show that both 

classic ordinary least squares and robust standard errors perform poorly in the presence of 

within-cluster correlated errors, while cluster standard errors perform much better. We take 

advantage of Excel’s spreadsheet interface to produce clear and intuitive visuals of the data 

generation process and intuitively explain key results. Customizable Stata and R 

implementations, which help in further analysis by taking advantage of the unique different 

capabilities of Stata and R, are also provided. We conclude with suggestions for how to use these 

files in the classroom. 
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1. Introduction 
 

Once taught only at the graduate level and even then also in an advanced elective, complex 

survey methodology has become so common that it deserves to be considered as a special topic 

in an undergraduate, upper-level econometrics course. This paper will show how to teach the 

concept of within-cluster or intra-cluster correlation, an essential element of complex surveys, 

using Excel, Stata, and R. Highlights include clear presentation of the data generation process 

(DGP), simulation to demonstrate sampling distributions, and emphasis on the estimated 

standard error (SE) as a random variable. 

 

The exposition is sensitive to the intended audience. Instead of a mathematically rigorous 

approach, with a variety of abstract modeling scenarios and error structures cast in formal 

language, this paper will consider a single, concrete within-cluster correlated error DGP (in the 

family of cluster-specific random effects models) based on Moulton (1990). We further restrict 

the analysis by making the ordinary least squares (OLS) estimator the main focus of the paper. 

Our goals include explaining why OLS estimated SEs (which we call classic SEs in this paper) 

do not do a good job in estimation, why robust SEs do not do much better, and how cluster SEs, 

which give good results, work. We include, as optional, advanced material in the Excel 

workbook, explicit matrix derivations of the various SEs, including exact SEs. 

 

Complex surveys may consist of two or more of the following: stratified sampling, cluster 

sampling, and unequal probability of selection. Stratified sampling increases the precision of the 

estimates but increases the cost of the survey. On the other hand, cluster sampling and unequal 

probability of selection are utilized for convenience in conducting the survey and to lower the 

cost of the survey. All the above non-simple random sampling methods lead to increased 

complexity in calculating standard errors. Cluster sampling increases the standard error of the 

estimates as sampling variations arise from different clusters of observations being chosen in 

different samples instead of different individual observations, as is the case with sampling 

methods that do not involve cluster sampling. Since all of the observations in the clusters are 

likely to be fairly similar to one another, we do not get as much independent information when 

we select a cluster and measure individual observations inside that cluster. Broadly speaking, 
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there are two types of violations: unequal probability of selection and errors that are not 

identically and independently distributed (iid). Both of these complications are characteristics of 

complex surveys, but they are separate issues and can be isolated for individual exposition.  

 

Barreto and Raghav (2013) showed how unequal probability of selection can lead to biased and 

inconsistent OLS coefficient estimates even if there is no cluster sampling that causes errors to 

be non-iid. The paper went on to explain why probability-weighted least squares out performs 

OLS in such situations. 

 

This sequel focuses on how cluster sampling causes errors to be not iid, while assuming equal 

probability of selection. It uses simple random sampling (implying equal probability of selection) 

with a DGP that features within-cluster correlation of errors. By explicitly modeling and 

displaying errors that violate the classic iid assumption, students can see and understand the 

meaning of “correlated errors” produced by complex surveys (and, in similar fashion, panel 

data). Furthermore, they can directly observe the implications of the within-cluster correlated 

error structure on OLS coefficients and a variety of estimated SEs. 

 

The Excel workbook contains several user-defined functions that enable implementation of the 

DGP and Monte Carlo simulation. We use these functions for simulation to develop intuition and 

provide analytical results for confirmation. With the Cluster.xlsm workbook open, these 

functions can be accessed by other open workbooks and provide a convenient way to use Excel 

to analyze data from complex surveys.  

 

The next section describes the model and its implementation in Excel. Section three explains 

how to run a variety of simulations to show the primary results: OLS estimated SEs are biased 

and inconsistent when errors are within-cluster correlated, robust SEs adjust for 

heteroscedasticity, but not within-cluster error correlation, and cluster SEs can offer better 

estimates, but they are not a perfect solution. The next two sections describe the implementations 

in Stata and R. The Excel, Stata, and R files are all freely available at 

www.depauw.edu/learn/stata. The last section offers teaching tips. 
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2. Modeling a Within-cluster Correlated Errors DGP in Excel 
 

The Excel workbook, Cluster.xlsm, is a macro-enabled file that requires Microsoft Excel 2007 or 

greater. The file will work in earlier versions of Excel (back to 1997), but the number of clusters 

and error correlation matrix must not exceed 256 columns. With Excel 2007 or greater, having 

hundreds of clusters with many observations per cluster is possible, but the bigger the data set, 

the slower the simulations. Experimenting with large numbers of clusters and many observations 

per cluster is better done in R because the simulations run much faster. Download Cluster.xlsm 

from www.depauw.edu/learn/stata and be sure to enable macros when opening this file.  

 

The DGP sheet has a six observation data set, with three clusters of two observations each. This 

sheet gives a bird’s eye view of the data generation process. Although complex surveys are based 

on sampling from finite populations, the core logic of within-cluster error correlation is easier to 

grasp by modifying the classical linear model that forms the foundation of regression analysis. 

Thus, in the DGP sheet in Cluster.xlsm, the data are generated by ciciXciY εβ +=  where 

),0(~ cNci σε  and ερεε =),( cjciCor  for i ≠ j with c clusters of size nc yielding n = c nc total 

observations. The terminology is conventional: error and epsilon, ε, are synonymous; Greek 

letters (in red text) are unknown parameters, while Latin letters represent sample analogues; and 

residuals (e) are found by subtracting predicted Y (
^
Y ) from actual Y. 

 

Figure 1 shows how this DGP is implemented in Excel. Click on one of the Y cells to see that the 

coefficients, β0 and β1, are used in the familiar way to produce the deterministic component of Y 

and a random error term is added to create observed Y in column N. Notice that the Xs are fixed 

in repeated sampling and do not change as F9 is pressed. The cluster indicator variables, C1, C2, 

and C3 and Cluster ID help communicate the clustered nature of the data set.  

 

<<Insert Figure 1 Here>> 
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The key to clustering is, of course, the error correlation matrix in cells G11:L16 and its 

contribution to the epsilons realized in column M. Click the Cluster 1, 2, and 3 radio buttons in 

the Highlight box for a visual display of how the errors are clustered. The epsilon (ε) values are 

produced by three separate uses of the MULTIVARNORMAL array function in cells M11:M12, 

M13:M14, and M15:M16. Click in cell M11 or M12 to highlight precedent cells, showing how 

MULTIVARNORMAL outputs a pair of random variables that conform to the average, SD, and 

within-cluster error correlation matrix. Press the Esc (escape) key to exit an array function. 

Pressing the F9 key recalculates the sheet and draws new epsilons, which makes the observations 

in the charts bounce. Press F9 repeatedly and observe how the errors bounce with no obvious 

relationship. This is the hallmark of independent and identically distributed errors. 

 

To show that the errors are in fact normally distributed, click the  button and track two 

epsilons (e.g., cells M11 and M12). Results from this simulation should offer convincing 

evidence for the claim that the errors are normally distributed with mean zero and SD of seven.  

 

To demonstrate the impact of within-cluster correlation on the errors and observed Y, change ρε 

in cell G6 to 0.99 and press F9. The error correlation matrix updates, populating the off-diagonal 

terms in each cluster with 0.99 and the epsilons now show a marked pattern that is discernible in 

the 3 pairs of errors that are drawn with every press of F9. Each pair of epsilons is clearly 

connected—a high (low) value of one epsilon is now followed by another high (low) value and 

the pairs are either positive or negative, but not mixed as was common when there was no 

within-cluster correlation. The chart to the right of the epsilons provides a strong visual, showing 

the pairwise connection that is the very definition of within-cluster correlated errors. A Monte 

Carlo simulation of the within-cluster correlation of the errors (tracking cell Q28) shows that the 

MULTIVARNORMAL function is working (roughly) as advertised. 

 

To emphasize the difference between the classical linear model and the within-cluster correlated 

errors DGP, simply copy the DGP sheet and reset cell G6 to its initial value of zero. Now switch 

back and forth between the two DGP sheets, pointing out the similarities and differences. The 

parameters and Xs are the same, but the error correlation matrix is different and this is what is 

driving the difference in the errors.  
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Scroll right until columns AC:AK are on screen. Excel’s native LINEST function is used to show 

OLS regression results. The orange background cell is the OLS estimated SE, which we will 

refer to as the Classic SE. It is computed by using the root mean squared error (RMSE) as an 

estimate of the SD of the errors. LINESTR is a user-defined function that reports the Robust SE 

in the blue background cell. It uses each observation’s residual squared as an estimate of the 

individual variance for each observation. LINESTW is a user-defined function that computes the 

Cluster SE based on the conventional Taylor linearization formula. Finally, the Exact SE of the 

OLS estimated slope coefficient, i.e., the true precision of the OLS estimator based on exact 

knowledge of ρε and σi, is displayed in cell AC31 as an output of the OLSEXACTSE user-

defined function. The red text reminds students that the Exact SE is based on unknown parameter 

values and is unobservable. It is also useful to note that the Exact SE is not a random variable. 

The formulas for the covariance matrices are provided below.  

 

Classic SE: 

 2 1ˆ ˆ( ) ( ' )nV b X X
n k

σ −=
−

. 

 

Robust SE: 

1 1ˆ ˆ( ) ( ' ) ' ( ' )nV b X X X X X X
n k

− −= Ω
−

, where Ω̂  is a diagonal matrix with each 

observation’s estimated error variance ( 2ˆiσ ). Note that
1

ˆ' ' '
n

i
X X x e ex

=

Ω =∑ . 

Cluster SE: 

1 1ˆ ( ) ( ' ) ( ' )
1

cV b X X D X X
c

− −=
−

, where ∑
=

=
c

i
exexD

1
'' . 

Each cluster’s exex '' is calculated by first summing ' 'x e  and ex over the observations in 
each cluster and then multiplying. So, there will be c of these exex '' products, one for 
each cluster. These are then added together to get D.  
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Exact SE: 

1 1

1

ˆ ( ) ( ' ) ' ( ' )
1

c

c c c c
cV b X X X Rho X X X

c
− − = Ω −  
∑ , where Ωc is a diagonal matrix with 

each observation’s error variance ( 2
iσ ) and Rhoc is the within-cluster correlation matrix. 

Similar to the D matrix in Cluster SE formula above, when calculating the term in the 

parentheses, only data within each particular cluster are used.  

 

Matrix manipulations that reveal detailed computations for the SEs of the sample slope displayed 

in column AC are available by scrolling right. The gray shaded columns separate the different 

standard errors. The Robust SE is calculated in two equivalent ways, with the first an extension 

of the Classic SE and the second a natural lead-in to the Cluster SE. Notice that the Robust SE 

sums ' 'x e ex  over all of the observations, while the Cluster SE creates individual ' 'x e ex  

products, one for each cluster and then sums these individual products. This is the critical step in 

how the Cluster SE incorporates within-cluster correlation—it essentially treats each cluster as 

an observation for purposes of variance estimation. 

 

With columns AC:AK visible, pressing the F9 key repeatedly confirms that the estimated 

coefficients are the same, but the three estimated SEs are different. Both estimated coefficients 

and estimated SEs change with each recalculation, forcefully demonstrating that they are random 

variables. Their sampling distributions are of utmost interest and will determine which estimator 

is preferable. Consistent with our intuitive, visual pedagogical approach, simulation will be our 

primary mode of analysis. Having the Exact SE available enables confirmation of the simulation 

and provides a clear signal of which statistics are random variables and which are not. 

 

We have, however, reached the limits of this DGP—three clusters with two observations per 

cluster is simply too small to explore the properties of the various estimators. Scroll back left to 

the beginning of the DGP sheet. Set ρε = 0 (in cell G7) if needed and confirm that cells D22 and 

D23 are set to 25 and 4, respectively. Click the  button.  
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Excel inserts two new, color-coded sheet tabs into the workbook. The fixed Xs in column B 

come from the matching 25X4 sheet. Scroll right to column DY in the 25Y4 sheet, noticing along 

the way how the DGP has been implemented in exactly the same way as the tiny data set in the 

DGP sheet. Click on cells to see formulas as needed. Column DY has four calls to the 

MULTIVARNORMAL function, one for each cluster. Column DZ has the familiar formula for 

the Y as the sum of the deterministic and stochastic components. Further right are two charts with 

LINEST, LINESTR, and LINESTW below. In addition, the Exact OLS SE is reported.  

 

The tight cloud is a function of the parameters chosen. Visit the 25X4 sheet to see how the fixed 

Xs were generated. With 25 clusters, a Step X of 3 (in cell B2) is producing a great deal of spread 

in the Xs. Lowering Step X will produce less spread in the Xs and increase the variability of the 

OLS slope estimator. Exploring the relationship between the spread of the Xs and the SE of the 

OLS slope estimator would be an interesting open-ended assignment. 

 

Return to the 25Y4 sheet and press F9 repeatedly to confirm that the Exact SE does not bounce, 

while the other three estimated SEs vary. We are ready to explore the properties of each 

estimator of the OLS SE. 

 

3. Monte Carlo simulation to evaluate estimators of the SE 
 

With ρε = 0 and homoscedastic errors, the Classic SE should perform well. Click the  

button and accept the default 1,000 repetitions to run a simulation. The resulting output is in a 

new sheet, conveniently color-coded and placed between the Y and X sheets for the 25, 4 

(number of clusters and observations per cluster) pair. Although your output will not be exactly 

the same, Figure 2 shows typical results. 

 

The results from the 1,000 samples are listed in the simulation output sheet in rows 2 to 1001. In 

Figure 2, rows 997 to 1001 contain slope coefficients (column B) and three estimated SEs 

(columns C, D, and E). Summary statistics are displayed in rows 1003 to 1006. 

 

<<Insert Figure 2 Here>> 
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Cell B1003 in Figure 2 has the average of the 1,000 slope coefficients, which is close to 2 (the 

parameter value) and suggests that OLS is unbiased. The SD of the slopes in cell B1004 is an 

approximation of the true, exact OLS SE and, for convenience, it is also reported in cell H1003, 

next to the Exact SE. The fact that the Approx SE is close to the Exact SE is evidence that the 

simulation is working well. 

 

The average of the 1,000 estimated SEs reported in row 1003 of Figure 2 should be compared to 

the Exact SE. Not surprisingly, given that the DGP obeys the classical linear model, the Classic 

SE is quite close to the Exact SE. This is evidence that all is well. 

 

Next, we turn attention to a simple violation of the classical model: unequal variance of the 

errors. Return to the DGP sheet and click the  button. The Y on X chart displays the 

familiar horn-shape that is indicative of heteroscedasticity because the formula for Y has been 

altered. Click on a Y cell in column DZ to see that that stochastic component is now the error 

multiplied by the square of the value of X. Thus, bigger X values have bigger error variances. 

Notice that the Exact SE is no longer displayed because the way we have implemented 

heteroscedasticity by modifying the formula for Y is not properly incorporated into the matrix 

computation for the Exact SE.   

 

Click the  button and accept the default 1,000 repetitions to run a simulation. The 

variability in b1 is so high that it is likely that the average of merely 1,000 estimated slopes is not 

near 2, the population parameter. In fact, the OLS slope estimator is unbiased even in the 

presence of heteroscedasticity and this can be demonstrated by increasing the number of 

repetitions in the simulation. More important for our purposes is a comparison of the Classic and 

Robust SEs.  Simulation shows that the Classic SE severely underestimates the true variability 

(as reflected in the Approx SE), while the Robust SE does fairly well. This is a clear 

demonstration of why the Robust SE has come dominate econometric practice. 
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We are now ready to show the implications of the within-cluster correlated errors. Begin by 

returning to the 25Y4 sheet and clicking the  button to return the DGP to the classical 

model. Scroll left to the beginning of the sheet and change cell D4 to 0.99. Click the  

button and scroll right to the end of the sheet, noting how the error correlation matrix has been 

changed.  

 

The two charts now offer a strong visual of the effects of within-cluster correlation. Press F9 

repeatedly to redraw errors and observe how they seem to be clumped together, as shown in 

Figure 3. Each cluster has highly correlated errors so they are not evenly distributed like before. 

This translates into the grouping effect in the Y on X chart.  

 

<<Insert Figure 3 Here>> 

 

Notice that, before running a simulation, it is easy to see that the Classic and Robust SEs are 

roughly half of the Exact SE, while the Cluster SE seems to be doing much better. Pressing F9 

repeatedly emphasizes the effect of clustering in the charts and shows that the Cluster SE seems 

best, but a simulation is needed to make the case more concretely.   

 

Click the  button and examine the results, which will be similar to Figure 4. There are 

three critical points to be made:  

1) The Classic SE is badly biased—comparing 0.029666 to 0.061731 shows that it is, on 

average, roughly half of the Exact SE. Using an estimated SE computed by the 

conventional algorithm for OLS will underestimate the true precision of the variability in 

the estimated slope, compromising confidence intervals and hypothesis testing.  

2) The Robust SE (with average value of 0.028926 in Figure 4) does not fix this problem. As 

Cameron and Trivedi (2005, p. 707) point out, “The term ‘robust’ standard error can 

confusion.” The Robust SE adjusts only for heteroscedasticity and is powerless against 

within-cluster correlated errors in a complex survey (or panel data set). 
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3) The Cluster SE (with average value of 0.058111 in Figure 4) does much better in this 

case. Although not exactly on target (and this is not an artifact of simulation), it is much 

closer to the Exact SE than its rivals.  

 

<<Insert Figure 4 Here>> 

4. Stata Implementation 
 

Stata is one of the more popular statistical packages and many instructors may want to use it 

instead of Excel. As Stata is more geared towards programming rather than visualization, the 

implementation in Stata will not be as graphical as in Excel. The Stata do-file Cluster.do 

(available at www.depauw.edu/learn/stata) replicates the simulations described above. 

 

This explanation below assumes that line numbers are displayed in the do-file editor of Stata. In 

case they are not, they can be enabled by clicking on the Edit menu of the do-file editor window 

of Stata, then selecting Preferences.  Select the Editor tab of the dialog box and check Line 

Numbers, then click OK.  

 

All of the customizable parameters are in the form of local macros and are defined at the very 

beginning of Cluster.do between lines 16 and 31. Each set of parameters are separated by a blank 

line. The first set contains local variables clusters and obs_per_cluster. The former sets the 

number of clusters in the simulations and the latter sets the number of observations within each 

cluster. The next set contains parameters regarding the X variable. Variables corr_x, mean_x, and 

sd_x respectively define the within-cluster correlation, the mean, and the standard deviation of 

the X variable. The next set contains information about the distribution of the errors. Variables 

mean_ep, sd_ep, and corr_ep respectively set the value of the mean, standard deviation, and the 

within-cluster (or intra-cluster) correlation of the epsilons. The values of betas are set with local 

macros beta0 and beta1. Finally, the number of repetitions is set using the variable reps. The 

code used to calculate Exact SEs is located between lines 355 and 371.   

 

Unlike the Excel file, the do-file has the additional option of drawing different sets of X values 

and then running Monte Carlo simulations with each set of X. The number of draws of the X 
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variable is set by x_reps. To match the Excel implementation, x_reps is initially set at one. 

However, if x_reps is changed to 5 and reps is set at 1000, then Stata will run 5000 regressions, 

with 1000 simulations for each set of X. We use an algorithm in Stata that does not require us to 

create large matrices to store results as this can be problematic in some versions of Stata such as 

the small or the IC version. Instead, our method updates the value of means and standard 

deviations of slope coefficients of individual regressions in each iteration during that iteration. 

The formulas for which we update the values are located between lines 311 and 337. 

 

We recommend not setting Monte Carlo repetitions to more than 1000 as that could take a lot of 

time and, therefore, may not be suitable for classroom use. In order to make sure that results are 

exactly replicated, we should set the seed to a specific number (we have set it to 5000 but it can 

be set to any other number).  

 

<<Insert Figure 5 Here>> 

  

As Figure 5 shows, running Cluster.do will give results that enable easy analysis. Information 

about the parameter values used in the simulation is reported, including the within-cluster 

correlation of the epsilons (.7). The average OLS slope coefficient (2.0095557) is followed by 

five standard errors. The Classic SE (the ordinary OLS standard error), Robust SE, and Cluster 

SE are the average of the estimated standard errors in the 100 repetitions. Finally, as explained 

previously in the paper, the Stata output also reports the exact standard error of the OLS 

estimator and the SD of the OLS slope coefficients from each repetition, which we call the 

approximate standard error.  

 

These five SEs are not to be compared to each other. The Exact SE is the true precision of the 

OLS estimator and the Approx SE is being used here to confirm that the simulation is running as 

expected. The other three SEs are evaluated by comparing them to the Exact SE. Even with only 

100 repetitions, Figure 5 offers evidence in favor of the Cluster SE since it is much closer to the 

Exact SE than its two rivals. 
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5. R Implementation 
 

In addition to Excel and Stata, we have also provided an R script file called Cluster.R (available 

at www.depauw.edu/learn/stata) to implement the DGP in R. The R programming language is 

open source, available across many platforms, and has many resources for help and support 

(Racine and Hyndman, 2002). Anyone can download R for free from www.r-project.org. 

 

Unlike Stata, some versions of which have limitations on matrix size, R has no such constraints. 

This is why we have used a different algorithm than the one we used for the implementation in 

Stata. This method takes advantage of the ability of R to create larger matrices where we store 

the results of each repetition (estimated slope and various SEs). These matrices, which are named 

as slope_coef_array, se_OLS_array, se_robust_array, and se_cluster_array will enable further 

analysis using the individual results of each simulation. Just like in the Stata do-file, all of the 

customizable variables are displayed at the beginning of the R script file.  

 

The implementation in R is much faster than Stata so we can experiment with a larger number of 

repetitions, a larger number of clusters, and/or a larger number of observations per cluster with 

R. Figure 6 shows sample output.  

 

<<Insert Figure 6 Here>> 

 

Notice that 1000 clusters of 3 observations each are drawn 10,000 times. This would be 

impractical in Excel and would take a long time in Stata. The results in Figure 6 confirm the 

results from earlier simulations (see Figures 4 and 5): the Cluster SE is clearly much superior to 

the Classic and Robust SEs. 

 

6. Teaching tips  
 
This paper focuses on a limited range of options and content of the econometrics of complex 

survey design, an area with many models, specifications, and error structures (see Cameron and 

Trivedi (2005) and Lohr (2009)). The exposition was driven by a desire to convey the heart of 
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the issue of within-cluster correlation to a student audience. We think this is the best way to 

teach this material. Instead of trying to do too much, focus on core lessons and ideas with strong 

visuals and concrete, numerical examples. 

 

After reviewing the DGP, we ran three simulations. First, under the classical model, it is clear 

(Figure 2) that the Classic SE does reasonably well. Incorporating heteroscedasticity and 

simulating demonstrates the power and popularity of the Robust SE. The third simulation is the 

most important: as Figure 4 shows, both the Classic and Robust SEs do badly, while the Cluster 

SE wins the race. This key result was replicated in Stata and R. 

 

Under both heteroscedasticity and within-cluster correlated errors, OLS remains consistent, but it 

is inefficient. We ignored this point because our focus was on the fixing the estimated SE. Under 

a complex survey design with unequal probability of selection, Barreto and Raghav (2013) show 

that OLS yields biased slope coefficients. In this case, OLS must be replaced by an unbiased 

estimator (such as the user-defined function LINESTW or Stata’s svyset and svy: reg approach). 

 

The Excel implementation is best for introducing and explaining the effects of within-cluster 

correlated errors. The spreadsheet shows the effect of cluster sampling and graphs allow for 

strong visuals that update when parameter values are changed. To simulate a real-world complex 

survey, however, with thousands of clusters, and tens of thousands of observations, R is the best 

option. 

 

The larger the number of clusters, the better will be the accuracy of the Cluster SE. Even though 

the cluster standard error always does better than the usual classic (OLS) and robust standard 

error estimators in the presence of within-cluster correlated errors, it does not estimate the Exact 

SE very well when the number of clusters is small. However, in practical applications of cluster 

sampling, the number of clusters is quite large. National surveys such the Current Population 

Survey (CPS) and National Health Interview Survey (NHIS) use cluster sampling to save time 

and money. The CPS has 2,025 clusters and NHIS has 1,900 clusters. As we have shown above, 

the cluster standard error does well under these circumstances. Discussing the sampling design 

and methodology of the CPS and NHIS in class or asking students to read how these surveys are 
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conducted as a part of a homework assignment can be useful exercises. This helps students 

understand the practical application of cluster sampling and the difficulties encountered in 

complex survey design.  

 

The R-script file can also be used in a variety of homework assignments and for independent 

projects. Unlike Excel and Stata, R is free to download and use. R is also faster than both Excel 

and Stata in running simulations. Students can use the R-script file for exploratory exercises, 

such as running simulations for different combinations of number of clusters, observations per 

cluster, and different values of epsilon and the slope variable. The R-script allows for looping 

over the X variable during a simulation. This enables tracking the effects of different Xs on the 

standard errors. Such exercises are likely to take a lot of time to finish and therefore are not 

suitable for classroom activities. They are best left as homework assignments or independent 

studies to be finished at home by students and preferably left to run overnight.  
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Figure 1: Implementing within-cluster correlated errors in the DGP sheet in Cluster.xlsm. 

 
β0 0 Red text = unobserved
β1 2 Change yellow-backgrounded cells.

Press F9 to recalculate the sheet. 
n 6 Total number of obs Pay attention to what bounces and what stays constant. 4
c 3 Number of clusters ρε 0
nc 2 Number of obs in each cluster Avg ε 0 0 0 0 0 0

σε 7 7 7 7 7 7
Intercept X C1 C2 C3 Cluster ID Obs 1 Obs 2 Obs 3 Obs 4 Obs 5 Obs 6 epsilon (ε ) Y

1 13.7575581 1 0 0 1 1 0 0 0 0 0 2.500966296 30.01608
1 10.0790108 1 0 0 1 0 1 0 0 0 0 5.557588925 25.71561
1 24.916179 0 1 0 2 0 0 1 0 0 0 3.817786837 53.65014
1 34.799739 0 1 0 2 0 0 0 1 0 0 8.595549307 78.19503
1 21.3619569 0 0 1 3 0 0 0 0 1 0 15.02719954 57.75111

1 21.0646464 0 0 1 3 0 0 0 0 0 1 5.758486141 47.88778

Scroll down to set Xs.

0

20

40

60

80

100

0 10 20 30 40

Y

X

Y on X

-20
-15
-10

-5
0
5

10
15
20

1 2 3 4 5 6Ep
sil

on

Observation Number

Epsilons

Highlight

Cluster 1

Cluster 2

Cluster 3

None

MC Sim

 
 
 

Page 16 of 21 
 



Figure 2: Simulation results for ρε = 0 and constant σε = 7. 
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Figure 3: Showing the effects of within-cluster correlation. 
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Figure 4: Simulation results for ρε = 0.99 and constant σε = 7. 
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Figure 5: Simulation results for ρε = 0.7 with 30 clusters of 3 observations each. 
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Figure 6: Simulation results for ρε = 0.7, with 1000 clusters of 3 observations each. 
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