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Monte Carlo Simulation

Anyone who considers arithmetical methods of producing random digits is, of course,
in a state of sin.

John von Neumann1

The one thing about Monte Carlo is that it never gives an exact answer.
Stanislaw Ulam2

9.1. Introduction

The chapters in the first part of this book make clear that regression analysis
can be used to describe data. The remainder of this book is dedicated to
understanding regression as a tool for drawing inferences about how variables
are related to each other. The central idea in inferential statistics is that the
data we observe are just one sample from a larger population. The goal
of inference is to determine what evidence the sample provides about the
relationship between variables in the population.

This chapter explains how we will use the computer to draw random sam-
ples to evaluate the performance of a variety of sample-based statistics. We
will review basic theory behind random number generation with computers,
offer a simple example of Monte Carlo simulation, and introduce a Monte
Carlo simulation Excel add-in.

Like regression analysis, Monte Carlo simulation is a general term that has
many meanings. The word “simulation” signifies that we build an artificial
model of a real system to study and understand the system. The “Monte
Carlo” part of the name alludes to the randomness inherent in the analysis:

The name “Monte Carlo” was coined by [physicist Nicholas] Metropolis (inspired
by [Stanislaw] Ulam’s interest in poker) during the Manhattan Project of World

1 von Neumann (1951).
2 Ulam (1991, p. 199).
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War II, because of the similarity of statistical simulation to games of chance, and
because the capital of Monaco was a center for gambling and similar pursuits. Monte
Carlo is now used routinely in many diverse fields, from the simulation of complex
physical phenomena such as radiation transport in the earth’s atmosphere and the
simulation of the esoteric subnuclear processes in high energy physics experiments,
to the mundane, such as the simulation of a Bingo game or the outcome of Monty
Hall’s vexing offer to the contestant in “Let’s Make a Deal.”

(Drakos, 1995)

Monte Carlo simulation is a method of analysis based on artificially recre-
ating a chance process (usually with a computer), running it many times, and
directly observing the results.

We will use Monte Carlo simulation to understand the properties of differ-
ent statistics computed from sample data. In other words, we will test-drive
estimators, figuring out how different recipes perform under different cir-
cumstances. Our procedure is quite simple: In each case we will set up an
artificial environment in which the values of important parameters and the
nature of the chance process are specified; then the computer will run the
chance process over and over; finally the computer will display the results of
the experiment.

The next section explains the fundamental principles behind random
number generation, which is the engine that drives a Monte Carlo simula-
tion. Section 9.3 is a practical guide to generating random numbers in Excel.
Section 9.4 demonstrates Monte Carlo via a simple example, and the last
section introduces an Excel add-in that can be used to run a Monte Carlo
simulation in any Excel workbook.

9.2. Random Number Generation Theory

Workbook: RNGTheory.xls

Because Monte Carlo simulation is based on repeatedly sampling from a
chance process, it stands to reason that random numbers are a crucial part
of the procedure. This section will briefly explain the theoretical principles
behind random number generation.

We begin with a simple but important claim: Excel, like all other computer
software, cannot draw a true sequence of random numbers. At best, Excel’s
random draws can mimic the behavior of truly random draws, but true ran-
domness is unattainable. The inability of computer software to generate truly
random numbers results from a computer program’s having to follow a deter-
ministic algorithm to produce its output. If the previous number and the algo-
rithm are known, so is the next number. Because the essence of randomness
is that you do not know what is going to happen next, numbers produced by
computer software are not genuinely random. Thus, Monte Carlo simulation
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Figure 9.2.1. An LCG demonstration.
Source: [RNGTheory.xls]LCG.

with Excel is based on pseudorandom number generation. Throughout
this book, when we say random number, we actually mean pseudorandom
number.

The random number recipe used by all versions of Excel before Excel 2003
is called a linear congruential generator (LCG).3 Starting from an initial value,
called the seed, the LCG simply puts a number through a formula

NextNumber = (B · PreviousNumber + A) Mod m,

to generate the next number. In the formula above Mod means Modulus.
The expression x Mod y yields the remainder when a number x is divided by
another number y.

To see the simple logic behind this algorithm, go to the LCG sheet in
RNGTheory.xls. Figure 9.2.1 is a picture of a portion of the LCG sheet. Start-
ing from a seed of 0.5 and A = 100, B = 3, and m = 5, the next number is 1.5
(cell E7). The steps in the calculation are (1) 3 × 0.5 = 1.5, (2) 1.5 + 100 =
101.5, (3) 101.5 Mod 5 = 1.5. The output of the Excel function MOD(x, y) is
x Mod y.

The LCG (3 · PreviousNumber + 100) Mod 5 is an unsatisfactory random
number generator (RNG). After all, we will see 1.5 followed by 4.5, 3.5, 0.5
(the first number), and then the numbers simply repeat themselves. One way
to judge a random number generator is by its period or the number of values
generated before returning to the first value and recycling through the list.

3 As part of a massive revision of statistical functions, Excel 2003 uses a new algorithm to generate
Uniform(0,1) random numbers. Unfortunately, as of this writing, the new algorithm has a problem and
can give negative numbers. A patch is available from Microsoft at <office.microsoft.com>. As this
section will explain, we recommend using our own built-in random number generator. Execute Help:
About Microsoft Excel to see what version of Excel you are using. See the Basic Tools/RandomNumber
folder for more information about Excel 2003’s random number generator.
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By changing the parameters, A, B, and m, you change the performance of
the generator. For example, set m = 7 (in cell B4). The generated sequence
of numbers changes and the period lengthens to 6. The period, however, is a
simple, and potentially misleading attribute of a random number generator.
There are many other desirable attributes in a random number generator,
and many different tests have been devised to judge randomness.

We are now ready to examine Excel’s random number function, RAND
as implemented in versions prior to Excel 2003. Click the ShowRAND button to
see the Excel LCG. For the LCG used by RAND, Microsoft programmers
chose A = 0.211327, B = 9821, and m = 1. The numbers generated are always
between 0 and 1. Excel’s RAND function simulates a uniform distribution
on the interval from 0 to 1 (known as the Uniform(0,1) distribution). The
idea is that we are drawing random numbers from the interval 0 to 1 with
every number equally likely to be chosen.4 This is not as limiting as you might
think. For example, we can obtain numbers uniformly distributed between 0
and 10 by multiplying the original numbers by 10. In addition, we can add
50 to make them range from 50 to 60. In fact, starting from numbers drawn
from the Uniform(0,1) distribution, it is possible to generate numbers that
are random draws from almost any desired statistical distribution.

You will not see a repetition in the 15 numbers generated in column E – the
Excel RAND function has an extremely long period.5 However, it is shown
below that, its long period notwithstanding, Excel’s RAND is not a good
random number generator. Visual Basic, the programming language behind
Excel, has its own LCG random number algorithm called Rnd. It is preferable
to Excel’s RAND. Rnd uses B = 1,140,671,485, A = 12,820,163, and m = 224.
Its period is 16,777,216 (224), but, like Excel’s RAND, it is still a fairly crude
RNG.

The problem with both RAND and Rnd is that the sequences of num-
bers they produce have too much structure, meaning they are not “random
enough” when seen from certain perspectives. Figure 9.2.2 offers a simple
example of the undesirable structure embedded in RAND and Rnd. The
three graphs in Figure 9.2.2 were created by trapping the next number in the
sequence whenever the previous number fell between 0.7 and 0.7001. Each
graph has 1,000 data points. Excel’s RAND function graph is the least ran-
dom of the three. Whenever a number between 0.7 and 0.7001 is visited, the
next number is guaranteed to lie on one of the two lines in the graph. That is
not very random. Visual Basic’s Rnd fills the graph, but the points are still too

4 Well, not every number. Because it uses binary arithmetic and has finite memory, Excel can only recog-
nize 254 points on the number line between 0 and 1.

5 In fact, because of complicated floating-point precision issues, Excel’s RAND function does not exactly
repeat itself after 1,000,000, the period for the LCG 9821*x−1 + 0.211327. For more on this issue, see
the information in the BasicTools/RandomNumber folder.
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Figure 9.2.2. Comparing three random number generators.
Source: [RNGTheory.xls]Graphs.

systematic – they fall on straight lines. The bottom graph looks like the best
of the three: there does not appear to be a systematic relationship between
successive numbers in the sequence.

The bottom graph in Figure 9.2.2 is derived from an implementation of
a random number algorithm based on a fast multiple recursive generator
(FMRG) (Deng and Lin 2000). Multiple recursive generators are like LCGs
in that they use the previous output to generate the next number, but instead
of using just the previous number like an LCG, an MRG uses a linear com-
bination of the past k random numbers generated.

xi = (a1xi−1 + . . . + akxi−k) mod m

The formula above says that the ith number in the sequence is a linear
combination of the previous k numbers. As with an LCG, the parameter
choices (the a’s and m) in an MRG are critical components of the quality
of the random numbers generated. Our implementation of the MRG is the
simplest one available (hence the F as in fast in FMRG) based on using only
the last two random numbers generated (k = 2) and choosing the a1 and a2

coefficients from a special list of numbers. Deng and Lin, the developers of
FMRG, report the period as 4,611,686,014,132,420,608. You will probably not
revisit the same number.
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Figure 9.2.2 might appear to paint FMRG as a perfect random number
generator. This is not true. Although FMRG is better than RAND and Rnd,
it too will exhibit structure when examined under higher magnification. The
details of our implementation of Deng and Lin’s FMRG are beyond the
scope of this book, but additional information and complete documentation
are available in the Basic Tools/RandomNumber folder.

Summary

This section has provided a basic review of the principles of random num-
ber generation and highlighted an important fact: Not all random number
generators are the same. A Monte Carlo simulation based on a poor random
number generator is a poor Monte Carlo simulation. The hidden structure in
the pseudorandom sequence may completely invalidate the simulation.

The linear congruential random number generators employed by Excel
(the RAND function in versions before Excel 2003) and Visual Basic (Rnd)
are relatively unsophisticated and exhibit too much structure when successive
pairs are plotted. This book will use a more sophisticated random number
generator that has an extremely long period and possesses other desirable
properties.

This is not to say that the FMRG generator in our RANDOM function
is ideal or perfect. It turns out that random number generation is a com-
plex, difficult task. There are many other generators out there (with such
colorful names as the Mersenne Twister) and a great deal of debate in the
computational science community about the best ones. If you are inter-
ested in the details of our random number generator or want references
for a more in-depth study of random number theory, please see the Basic
Tools/RandomNumber folder.

You should never trust a Monte Carlo simulation without knowing the ran-
dom number generator used. You should always report the random number
generator used in a simulation. We recommend avoiding Excel’s RAND
unless the application is rudimentary or a simple demonstration. The next
section explains how to use RANDOM, the random number generator sup-
plied with this book.

9.3. Random Number Generation in Practice

Workbook: RNGPractice.xls

Although previous section focused on the theory behind random number
generation, this section will provide a guide to the practical issues of how
to actually get Excel to provide random numbers. In addition to reviewing
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RAND NORMINV(RAND(),0,1)
Uniform Normal

Average 0.50019275828668 0.00288489306875
SD 0.29027807011725 1.00048089727527
Max 0.99953004104712 3.30795409112160 Note how draws near 0 or 1 are
Min 0.00059867432756 −3.23954051612582 translated into numbers like −3.7 or +4.2

1000 Draws from a Uniform Distribution
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Figure 9.3.1. Output from RAND and NORMINV(RAND(),0,1).
Source: [RNGPractice.xls]NormalRand.

the different formulas available for uniform and normal distributions, this
section also reviews how Excel calculates cells.

Before explaining the options available, we warn against generating ran-
dom numbers with the Data Analysis add-in provided with many versions of
Microsoft Excel. Regrettably, not only does the add-in simply provide “dead”
values that do not change when the sheet is calculated, but the properties of
the random number generator are bad. The Data Analysis add-in should
never be used to generate random numbers.

To generate uniformly distributed random numbers with Excel, use either
Excel’s RAND function or, if the functions packaged with this book are
available, use the RANDOM function. Both functions require formulas that
use parentheses without any arguments: = RAND() and = RANDOM().

Open the RNGPractice.xls workbook and go to the Uniform sheet. Exam-
ine the formulas and results in columns A and E. Hit F9 to draw more random
numbers. (If it takes a long time for the sheet to draw new random numbers,
hit the

Recalculate this
Sheet Only button instead. There are thousands of cells containing

random numbers in the workbook, and every time you hit F9, the workbook
must compute formulas to replace every one of them.)

As with the uniform case, there are two ways to obtain normally dis-
tributed random numbers. The first approach uses intrinsic Excel func-
tions RAND and NORMINV. The NormalRand sheet uses the formula
“= NORMINV(RAND(), 0, 1)” to draw 1,000 random numbers from a
normal distribution with mean zero and standard deviation one. Hit F9 to
draw another 1,000 numbers. The summary statistics and histogram (see
Figure 9.3.1) show that NORMINV is working as advertised.
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Output = −0.201
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Figure 9.3.2. Converting from uniformly distributed random variables to normally
distributed random variables.
Source: [RNGPractice.xls]UniformToNormal.

The UniformToNormal sheet explains how the NORMINV function maps
numbers that are uniformly distributed into normally distributed numbers. It
begins by taking a random number from the Uniform(0,1) distribution – for
example, 0.42. Figure 9.3.2 shows that when we graph 0.42 on the Uni-
form(0,1) distribution, we see that 42 percent of the area under the entire
curve lies between 0 and 0.42. We want to translate that number into
a normally distributed random number. This is done as follows. Moving
down to the Standard Normal curve (with mean 0 and SD 1), we find
that value of x such that 42 percent of the area under the standard nor-
mal distribution lies between negative infinity and x. This turns out to
be −0.201. That is what NORMINV does: given inputs, 0.42 for the area
under the curve, 0 for the mean of the normal distribution, and 1 for the
SD, NORMINV(0.42,0,1) yields a value of −0.201. Each time you hit F9,
the UniformtoNormal sheet will draw another uniformly distributed ran-
dom number and show how that number is converted into a normally
distributed random number. The sheet also explains how to obtain num-
bers that follow a normal distribution other than the Standard Normal
distribution.

The NormalRand sheet uses the NORMINV and RAND functions to
generate normally distributed random variables. Although all seems well,
our review of the theory behind random number generation in the previous
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section explained that RAND is not a great random number generator. In
addition, it turns out that NORMINV in versions before Excel 2002 has a rare
but serious problem. It can return the nonsensical value of minus 500,000 (or
500,000) whenever the first argument, y, is too close to 0 (or 1). NORMINV
fails to report the error value #NUM (an indication that the computation
is invalid) for values very close to 0 or 1. More modern versions of Excel
have partially corrected the badly erroneous results, but testing has shown
NORMINV still has problems in Excel 2002 (and XP).6

We therefore recommend using the second approach to generating nor-
mally distributed random numbers: the NORMALRANDOM function
included with this book. The sheet NormalRandom shows how to use the for-
mula, “=NORMALRANDOM(mean, SD)” to draw 1,000 numbers quickly
and correctly from a normal distribution with given mean and SD.7

Although the results of the two sheets are superficially quite simi-
lar, remember that RANDOM and NORMALRANDOM are superior
to Excel’s intrinsic, analogous functions. Of course, you must have these
functions properly installed on the computer you are using. Our work-
books come fully prepared with these functions, but you cannot simply
type =RANDOM() on a blank spreadsheet because Excel may not have
access to the function. You must either open a workbook with the func-
tion available or install one of the add-ins packaged with this book (such
as the Monte Carlo Simulation add-in described later in this chapter). If
=RANDOM() is entered in a cell and Excel displays #NAME?, then the
function is not available. Finally, because RAND is a core Excel func-
tion, it is somewhat faster than RANDOM and NORMALRANDOM.8

We believe the trade-off of lower speed for computational superiority is
worth it.

You should be aware that if RANDOM or NORMALRANDOM is used
on a computer with our software properly installed and you then try to open
the workbook from a different computer, an update links notification will be
received, as shown in Figure 9.3.3.

If you click the Don’t Update button, when the workbook calculates,
cells using the RANDOM or NORMALRANDOM functions will display
a #NAME? error. If the Update button is clicked, it is possible to change
the source to an add-in on the computer you are currently using that has the
functions available.

6 See articles listed in Section 9.8 for more details.
7 NORMALRANDOM does not make use of the inverse cumulative function. See the Basic

Tools/RandomNumber folder for more details on the Box–Muller algorithm used by our function.
8 Testing has shown that NORMALRANDOM is quite a bit faster than NORMINV(RAND()).
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Figure 9.3.3. Update links notification.

We end this section with a brief review of calculation issues in Excel. You
may have noticed, as determined by the speed of your computer, that Excel
pauses for a few seconds when you hit F9 in the RNGPractice.xls workbook.
This is because thousands of cells are being recalculated.

Excel’s default calculation setting is to recalculate every cell with a formula
in every open workbook automatically whenever any cell is modified. Excel
reports its progress in the status bar at the bottom left-hand corner of the
screen. Automatic recalculation can be quite cumbersome and tedious when
you have a large spreadsheet with many formulas because it is necessary to
wait for Excel to finish recalculating after every new entry or change in a cell.

In many of our workbooks, we change the calculation setting to manual by
executing Tools: Options and clicking on the Calculation tab (displayed in
Figure 9.3.4). Try this now in the RNGPractice.xls workbook. After changing

Figure 9.3.4. Controlling calculation.
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the calculation setting to manual, enter a number in a blank cell and hit
enter. Notice that the sheet does not recalculate and Excel displays the word
“Calculate” in the status bar (on the bottom of your screen). This is the sig-
nal that the spreadsheet has been altered but the cells have not been recom-
puted and updated. You can continue to make changes and new entries in
cells without pausing for recalculation because Excel is set to manual calcu-
lation. You can force calculation when in the manual calculation mode by
hitting F9.

Manual calculation is a useful feature with large spreadsheets. Remem-
ber that the values displayed in the cells may be wrong, however, when the
“Calculation” signal is displayed because the cells have yet to be recalculated.

Summary

This section has shown how to get uniformly and normally distributed ran-
dom numbers from Excel. The Excel functions RAND and NORMINV can
be used for this purpose. This book also provides software with our own func-
tions, RANDOM and NORMALRANDOM, that we recommend and have
used under a wide variety of applications.

When a spreadsheet is populated with many thousands of cells with for-
mulas, automatic recalculation can really slow you down. Change the setting
to manual calculation and use F9 to recalculate as needed.

Having reviewed the theory of random number generation in the previous
section and covered how to generate random numbers within Excel in this
section, we now turn to the heart of this chapter: Monte Carlo simulation.

9.4. Monte Carlo Simulation: An Example

Workbook: MonteCarlo.xls

This section presents a concrete example of how Monte Carlo simulation can
be used. Suppose we know that Larry Bird, the legendary basketball player,
is a 90-percent free-throw shooter. That is, the chance of his making any given
free throw is 90 percent regardless of whether he made or missed his previous
free throw.9

Suppose further that we want to know how well the sample percentage will
perform as an estimator of Bird’s free-throw accuracy if we have a sample
of 100 free throws. Put another way, assume we have Bird, whom we know
is truly a 90-percent free-throw shooter, take 100 free-throw attempts. What

9 According to the Web site <www.larrybird.com/stats.html> Bird’s lifetime NBA free-throw percentage
was 88.6 percent in the regular season (3,960 made out of 4,471 attempts) and 89.0 percent in the playoffs
(901 out of 1012).
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percentage of the 100 attempts will he be likely to hit? We know that we
should see something around 90 percent because that is his true long-run
performance. However, because chance plays a role in free-throw shooting,
we may well get something different from 90 percent.

Now, the possibilities are anywhere from 0 to 100 percent, but what are the
likely or typical results? Is it plausible that we could see him make only 72
out of 100 attempts for a sample percentage of 72 percent? Is making every
shot (100 straight free throws), giving him a 100-percent sample percent-
age, something that we might see every once in a while? Or, are results like
72 and 100 percent so extremely rare as not to be worth worrying about?

In statistics, “rare” and “likely” are important words, whereas “possible” is
not too interesting.10 If results like 72 percent were quite common, we would
conclude that a single sample percentage of made shots out of 100 free throws
would be a bad way to gauge Bird’s true skill. After all, if we did not know
his true percentage and had only one sample with which to guess his true, but
unknown, shooting percentage, we might get a result like 72 percent and be
way off. If, on the other hand, we consistently get a sample percentage within,
for instance, 1 percentage point of 90 percent, then it could be argued that
the sample percentage of made shots out of 100 free throws is a good gauge
of Bird’s true skill.

What we are trying to do, of course, is to evaluate the likely size of the spread
in the sample percentage of a sample of 100 free throws. Each free throw has
some chance built into it, and thus the sample percentage of 100 free throws
also has a chance component. We need to figure out how much variation
there is in the sample percentage of 100 free throws. In other words, we need
to find the SE (standard error) of the sample percentage. A small SE of the
sample percentage is good – it means that the observed sample percentages
are unlikely to stray far from 90 percent.

There are two routes to figuring out the variation in the sample percentage.
The first is statistical theory.11 The second route is the Monte Carlo approach,
which entails producing a simulation of the data generation process, gener-
ating a series of replications of that process, and analyzing the results of the
experiment. This section shows how to implement this strategy.

The OneFreeThrow sheet in the MonteCarlo.xls workbook explains how
to use the RANDOM() and IF functions to simulate the result from a single
free throw. If the random number drawn is below 0.9, the free throw is made;
otherwise, it is missed. Excel registers a “1” for a hit and “0” for a miss.

10 It is “possible” that a 90-percent free-throw shooter would miss 100 in a row. The likelihood of this
outcome, 0.1100, is so remote that we ignore it completely. The chances of making every shot are not
so great either – 0.9100 = 0.00266 percent.

11 We review exactly how statistical theory can be used to solve this problem in the next chapter.



P1: IYP
0521843197c09 CB962B/Barretto 0 521 84319 7 September 29, 2005 1:26

Monte Carlo Simulation: An Example 227

To simulate Bird’s shooting 100 free throws is simple: just repeat the for-
mula in 100 cells as we show in the sheet called Sample. Call the results from
100 “shots” a single repetition of the simulation. The key information from a
single repetition would be the sample percentage of 1’s. You should press F9
per the instructions in the Sample sheet to make sure you understand that
the sample percentage of 100 attempts varies; press F9 again and again and
watch how the sample percentage bounces around. Sometimes Larry does
exceptionally well, maybe 94 or 95 percent, but every once in a while he does
quite badly – well, never as poorly as Shaq,12 for instance. Badly for Larry
is 85 percent, and below 80 percent is really rare. You might repeatedly press
F9 for 20 minutes and not see 79 percent.

Now that you understand how the success or failure of a single free throw
is determined via the RANDOM function and IF statement and how we
calculate the sample percentage from 100 free throws, we can turn to actually
creating and interpreting Monte Carlo simulation results.

To figure out the spread of the sample percentage in the Larry Bird exam-
ple, we simply conduct many repetitions and examine the resulting empirical
histogram of the results. Let us say we perform 1,000 repetitions. Now we
have 1,000 sample percentages. We can find the mean of these sample per-
centages and their SD (standard deviation). You are guaranteed to get an
average close to 0.90 (90 percent). The question is, How much spread is there
in the 1,000 sample percentages? The SD of the 1,000 sample percentages is
a Monte Carlo–generated approximation to the true, exact SE of the sample
percentage. Similarly, the empirical histogram of the 1,000 sample percent-
ages approximates the exact probability histogram (or sampling distribution).

Monte Carlo simulation will always be an approximation to the exact truth
because the exact truth in a sampling context is based on an infinite number
of repetitions. One thousand repetitions will usually generate a fairly good
approximation, but 10,000 would be even closer to the truth. No finite number
of repetitions, no matter how large, will give the exact answer. Monte Carlo
simulation cannot be used to obtain the exact right answer, but it can give an
increasingly good approximation as the number of repetitions rises.

We ran a Monte Carlo analysis of the sample percentage of 100 attempts
with our simulated Larry Bird shooting free throws. Figure 9.4.1 shows the
results.

The bars in the histogram show how many samples of 100 free throws
made a particular percentage. Of the 10,000 repetitions of 100 free throws,
the lowest sample percentage was 79 percent and the highest was 99 percent.
In almost 1,400 samples, the computer simulation of Larry Bird made exactly
90 out of 100 free-throw attempts. The mean of the 10,000 sample percentages

12 Shaquille O’Neal is a tremendously gifted 7-foot-1-inch athlete in the NBA.
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Empirical Histogram for 10,000 Repetitions
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Figure 9.4.1. Monte Carlo simulation of percentage made.
Source: [MonteCarlo.xls]MCSim.

was 89.99 percent with a standard deviation of 2.995 percent. This analysis
says that the likely size of chance error for the sample percentage of 100 free
throws is about 3 percentage points. Thus, we should not be surprised to find
that Larry Bird sinks 87 or 93 percent of his free throws when he makes 100
attempts. It would be very surprising, however, if he hit all 100, or if he hit
only 80 out of 100, because these values are more than 3 standard deviations
away; in most cases that means such outcomes are rare indeed.

Now it is your turn. From the Samples sheet, click on the Run Monte Carlo 
Simulation button.

A new sheet appears in the workbook called MCSim, and you are looking at
the results of a previous Monte Carlo simulation of the sample percentage
of 100 free throws. There is one extremely important difference between
Figure 9.4.1 and the graph on the MCSim sheet, for the former is “dead”
and the latter is “alive.” That is, the graph on the Excel sheet will change as
the values in column B change. That means you can run your own Monte
Carlo simulation as many times as you wish. Simply click on the Run Monte Carlo 

Simulation

button.
A dialog box like the one in Figure 9.4.2 will appear. After clicking the OK

button, you will be able to watch the progress of the simulation. So, how did
your simulation turn out? Is your histogram similar to ours?

A more subtle implication of the Monte Carlo analysis just performed is
that the empirical histogram of the Monte Carlo simulation for Larry Bird
appears slightly skewed to the left, which you can see by looking closely at
Figure 9.4.1. This is not an accident of our particular run. Look at your sim-
ulation results carefully. Is the left tail a little longer than the right? Is the
histogram symmetrical around the expected value of 90 percent? In other
words, is the fraction of samples with 91 percent made free throws roughly
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Figure 9.4.2. Running a Monte Carlo
simulation.
Source: [MonteCarlo.xls]MCSim.

equal to the fraction of samples with 89 percent? How about the fraction
of samples with 88 percent free throws made versus that for 92 percent?
Two points can be made here. First, it is not possible to do better than
100 percent, whereas 79 percent and below are possible outcomes. Second,
statistical theory tells us that, although the histogram of the sample per-
centage of 100 free throws ought to follow the normal distribution approx-
imately, it will not be distributed exactly normally. This point is discussed
in Chapter 10, in greater depth. For now, we remind you that the central
limit theorem tells us that the sampling distribution of the sample percentage
comes to resemble the normal distribution more closely as the sample size
increases.

Let us summarize the Larry Bird free-throw shooting example. We wanted
to know how much spread there was in the sample percentage. Instead of tra-
ditional analytical methods based on the theory of probability and statistics,
we adopted the Monte Carlo simulation strategy. We resampled repeatedly
and thereby obtained an approximation to the SE of the sample percent-
age of 100 attempts. Our run gave us a value of about 3 percent. What did
you get? The formula for the SE of the sample percentage gives us precisely
3 percent.13 It is, of course, no accident that Monte Carlo experiments yield
results close to the standard formulas of statistical theory.

13 The appropriate formula is

SE for sample percentage =
√

Probability of 1 × Probability of 0
√

Sample size
.
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If Monte Carlo simulation will simply reproduce already known answers,
why bother? First, it enables you to see clearly the source of chance error
and variation in a problem. Formulas often make it difficult to see what is
really going on. Although some people quickly understand and accept the
notion of randomness and variation, we believe most people learn much bet-
ter when they actually see variation. We believe many more people will really
understand when they hit F9 to draw another sample and see that sample per-
centage bouncing around. By hitting F9, you are doing and understanding
instead of passively reading or listening.

Second, Monte Carlo simulation focuses your attention on the details of
the data generation process. The method requires that you set up and imple-
ment a chance process. This requires careful thought about the source of the
randomness and how it is to be modeled.

Finally, Monte Carlo techniques drive home the concept of the SE, which is
surely one of the most difficult ideas in statistics and econometrics for begin-
ning students. The SE measures the spread of outcomes of chance processes.
Visually, it is the spread of the probability histogram of the different outcomes
of the chance process. The Monte Carlo method allows us to approximate
the probability histogram and therefore the SE just by running numerous
repetitions of the same data generation process.

Although our primary purpose in using Monte Carlo is to teach you econo-
metrics, we also would like to point out that there are many random variable
problems with no analytical solution. That is, traditional statistical theory
cannot solve them. This happens in econometrics often when small sample
sizes are under consideration. The advent of extremely fast computers has
opened a new avenue for solving these problems. Thus, it is not merely a
question of a neat alternative to a tried and true approach – Monte Carlo
methods offer approximate solutions to previously impossible problems.

To see another example of the Monte Carlo method, click on the Streak Finder

button (on the Sample sheet near cell D17) a few times. Each time, the longest
run of consecutive free throws made in one set of 100 attempts is reported
(see Figure 9.4.3).

Streaks in sports are the subject of much debate. Although no one disputes
that streaks occur, there is an argument over whether observed streaks are
caused by something other than chance.14 The streaks exhibited by our virtual
Larry Bird are due to chance alone because we draw random numbers to
determine if a free throw is made.

There is variation in the longest streak of free throws made in each sample
of 100 attempts. What is the average longest streak in 100 free throws? What
is the spread in the distribution of the maximum streaks? What does the

14 See the Hot Hand in Sports Web page: <www.hs.ttu.edu/hdfs3390/hothand.htm>.
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Figure 9.4.3. Maximum streak report.
Source: [MonteCarlo.xls]Sample.

sampling distribution of the maximum streak look like? As before, we forego
analytical solutions to these questions in favor of Monte Carlo analysis.15

Click on the Monte Carlo Simulation
Max Streak button (on the Sample sheet near cell D22) to

see a demonstration of how a Monte Carlo simulation can be used for approxi-
mate determination of the average and spread of the Max Streak sampling dis-
tribution. As before, a new sheet, this time named Streak, appears in the work-
book with results from 1,000 repetitions available for your inspection. Notice
that Max Streak is not normally distributed – it has a long right-hand tail.

You might want to try your own Monte Carlo analysis by clicking the
Run Monte Carlo 

Simulation button. Once again, the dialog box will describe the simulation
and the progress bar will keep you updated on where the simulation stands.
The progress bar is more useful this time because the simulation takes longer
(calculating the longest streak in a stretch of 100 free throws is much harder
than calculating the percentage made). You can do other work while the
simulation is running, but this may slow down the simulation itself (after all,
your computer will be busy doing other tasks instead of grinding out the
next repetition). If your screen saver comes on, this will also slow down the
simulation. You can interrupt the simulation by pressing the Esc (escape) key
on the upper left-hand corner of your keyboard. Excel will prompt you with a
dialog box, and you can click the End button to stop the simulation. Of course,
if you happen to be running on the latest-generation chip, these suggestions
are moot because the simulation will fly through 10,000 repetitions.

Summary

The free-throw shooting example in this section demonstrates how Monte
Carlo simulation works. We will use Monte Carlo analysis repeatedly to

15 For an analytical approximation to the exact distribution of the maximum streak problem, see William
Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd edition, revised printing,
New York: John Wiley and Sons, p.325. Our Monte Carlo results agree with Feller’s approximation.
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examine the properties of statistical estimators and to explain a variety of
ideas and concepts in econometrics.

With the computer generating random numbers, it will be fast and easy
to draw many random samples and then examine the resulting distribution.
This will provide a visual, concrete demonstration of difficult, abstract ideas.
In addition, with Excel, you will be able to run your own simulations and
compare your results to ours. If a point is unclear, you can always run the
simulation again.

9.5. The Monte Carlo Simulation Add-In

Workbooks: MonteCarlo.xls; MCSim.xla (Excel add-in);
MCSimSolver.xla (Excel add-in)

The previous section introduced Monte Carlo simulation using a workbook
that was especially designed for that purpose. This section shows how to use
an Excel add-in packaged with this book that will enable you to run a Monte
Carlo simulation from any Excel workbook. The add-in allows you to easily
and quickly run Monte Carlos of your own models and chance processes.

The first step is to install the Monte Carlo simulation add-in. The software
is in the Basic Tools/ExcelAddIns/MCSim folder. Open the MCSim.doc file
in that folder for instructions on how to install the add-in. Having installed
the MCSim.xla file, open the MonteCarlo.xls workbook (from the previous
section) to test drive the Monte Carlo Simulation add-in. Go to the Sample
sheet (because this is where the free-throw shooting chance process is imple-
mented in Excel) and execute Tools: MCSim . . . to get the dialog box shown
in Figure 9.5.1.

Enter cell B1 (which is the sample percentage) and click the Proceed but-
ton; the MCSim add-in will then go to work. It simply recalculates the sheet for
as many repetitions as requested and keeps track of the value of cell B1. When
finished, it adds a worksheet to the workbook displaying the first 100 repeti-
tions along with summary statistics and a histogram of the complete results
(see Figure 9.5.2).

Comparing the results of the Monte Carlo Simulation add-in to the Monte
Carlo built into the workbook shows the same substantive results, but the
display in the workbook is more readable. The Monte Carlo Simulation add-
in does not recognize that the sample percentage from 100 free-throws is not
a continuous number (0.91 and 0.92 are possible, but 0.915 is not) because it
is built for any chance process. Thus, in many of our workbooks that feature
Monte Carlo simulation, we will include the simulation in the workbook and
tailor it to the specific problem at hand.

The Monte Carlo Simulation add-in is ideal, however, for exploring prob-
lems in greater detail or running Monte Carlos on your own chance processes.
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Figure 9.5.1. Preparing to run a Monte Carlo simulation.

For example, in the free-throw shooting model, you might wonder what hap-
pens to the spread in the sample percentage as the number of free throws
changes. There is no way to explore this question in the MonteCarlo.xls work-
book because we did not build in this option. You can easily, however, modify
the sheet and use the MCSim add-in to explore this question.

To see how the SE of the sample percentage varies as the sample size
changes, create a new cell in the Sample sheet that computes the sample per-
centage of a different number of free throws. In cell C1 of the Sample sheet,
we entered the formula, “=AVERAGE(B4:B53)” to obtain the sample per-
centage of 50 free throws. Now, run the Monte Carlo Simulation add-in using
cell C1. You should see that the SD of the 1,000 repetitions (which is our
approximation to the true standard error) is larger and the histogram is more
spread out and looks even less normally distributed.

You might worry about the bounce in the standard deviation. Remember
that a Monte Carlo is never going to give the true, exact answer because that
would require an infinite number of repetitions. To obtain a closer approxi-
mation to the exact SE of the sample percentage, however, you can increase
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Average 0.900
SD 0.0316
Max 0.990
Min 0.790

Summary Statistics Notes

Histogram of Sample!$B$1

0.789 0.839 0.889 0.939 0.989

Figure 9.5.2. Results from the Monte Carlo Simulation add-in.
Source: [MonteCarlo.xls].

the number of repetitions. We also recommend that you get in the habit of
running and rerunning Monte Carlos if you have doubts about the results.
After all, you are just a few clicks away and the computer never gets tired.

You can modify the sheet to explore the sample percentage made of
200 free throws. Simply extend the formula in cell B103 (search for “fill down”
in Excel’s Help if you do not know how to do this) to cell B203; then find
the average of the cells from B4 to B203. Run the Monte Carlo Simulation
add-in to see the effect on the standard error. Note that you can compare two
cells and the results will be displayed on the same histogram. Run a Monte
Carlo that compares the sample percentage of 100 free throws to the sample
percentage of 50 free throws.

The pattern is clear: As n (the number of free throws) increases, the SE
of the sample percentage falls. In other words, the sampling distribution
becomes more tightly concentrated around the true shooting percentage.
You have demonstrated that the sample percentage is a consistent estimator
of Larry Bird’s true shooting percentage, which is an important property of
the sample percentage in this chance process. (We study consistency in more
depth in Chapter 15.)

Summary

Many of our workbooks will have Monte Carlo simulations that are config-
ured especially for the chance process being discussed. By clicking a button,
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you can display the results. The Monte Carlo Simulation add-in is a more
flexible, general tool. It permits resampling from any chance process that has
been modeled in an Excel workbook. Use it to explore advanced ideas and
to analyze your own problems via the Monte Carlo method.

Once you use Monte Carlo methods on your own models, you may find
a second Monte Carlo add-in that is part of this book especially helpful.
The Monte Carlo Simulation with Solver add-in uses a special, non-volatile
cell formula, RANDOMNV(), to draw random numbers. After loading the
MCSimSolver.xla add-in, you can enter RANDOMNV() as part of a cell
formula. Use RANDOMNV() instead of RAND() or RANDOM() as you
implement the optimization problem on a worksheet.

The volatility of RAND() and RANDOM() works in our favor when doing
conventional Monte Carlo simulation (with MCSim.xla) because we can eas-
ily recalculate the sheet, then track the results. However, a Monte Carlo based
on running Solver each repetition (e.g., to find a nonlinear least squares fit as
discussed in Chapter 22) cannot be implemented with volatile random num-
ber formulas because each time Solver puts down a trial solution, the sheet
recalculates and gets a new random number. For more information on this
advanced Monte Carlo simulation tool, please open the MCSimSolver.doc
file in the Basic Tools \ ExcelAddIns \ MCSim folder.

9.6. Conclusion

Random number generation is the heart and soul of Monte Carlo simulation.
This chapter has briefly reviewed the theory behind the generation of pseu-
dorandom numbers via linear congruential generators and explained how to
obtain random numbers on a spreadsheet with either Excel’s own RAND
function or the RANDOM function packaged with this book.

Once random numbers are generated on a sheet, it is a short jump to a
full-fledged Monte Carlo simulation. By repeatedly resampling and keeping
track of the results, we create a concrete, visual representation of sample-
based statistics. Our workbooks in the book may have built-in Monte Carlos,
or we may use the Monte Carlo Simulation add-in that was introduced in
the previous section. We hope the latter will stimulate your creativity and
encourage you to model chance processes in a wide a variety of applications.

Econometricians have known that Monte Carlo simulation is an effective
way to teach sophisticated concepts involving chance, but actually running
a resampling procedure requires writing code, including loops, and storing
results. We have completely removed this barrier in our materials. This book
will use Monte Carlo methods extensively to race estimators and learn sophis-
ticated concepts that once were accessible only through advanced mathemat-
ical means.
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9.7. Exercises

1. Change the setup in the Sample sheet of MonteCarlo.xls to simulate the free-
throw shooting behavior of Shaquille O’Neal, who shoots 50 percent from the
free-throw line. Run a 1,000-repetition Monte Carlo simulation of 100 free
throws by O’Neal. Of course he will make fewer free throws on average than
Bird, but what happens to the spread in the number of free throws made per
100 attempts?

2. Change the setup in the Sample sheet of MonteCarlo.xls to simulate a more
complicated process. On the very first shot that a player takes, he or she has
an 80-percent chance of hitting the free throw. On every subsequent shot, the
chances of hitting depend on what happened on the previous attempt. In taking
a given shot, if the player missed the previous time, his or her chances of hitting
are 70 percent; if the player hit, his or her chances are 90 percent. Run a 1,000-
repetition Monte Carlo simulation of 100 such free-throw attempts. What are
the Monte Carlo estimates of the expected percentage of free throws made and
the SE of the percentage of free throws made?

3. Open the EcolCorr.xls workbook used (in Chapter 2) and run a Monte Carlo
simulation (from the Live sheet) with 10,000 repetitions that tracks both the
individual- and group-level correlation coefficients. Take a picture of your
results. Copy and paste the picture in your Word document. Comment on your
results.

4A. How do the average and SD reported by the Monte Carlo simulation relate to
the expected value and SE?

4B. As the number of repetitions increases, what happens to the expected value and
SE?

5A. Use the Record All Selected Cells option and run another 10,000-repetition
Monte Carlo. In your 10,000 samples, how many times was the group-level r
negative? HINT: Use an IF statement like this: =IF(D3 < 0,1,0), then add the
entire column. (Do not forget to hit F9 to calculate the sheet if needed.)

If individual-level r > 0 and group-level r < 0, then you have an example of
the worst form of the ecological fallacy – association reversal.

5B. It is also possible to obtain a negative individual-level r with a positive group-
level r. Use your Monte Carlo results to demonstrate this. HINT: Use the IF
statement method used in part A.
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