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Bootstrap

I also wish to thank the many friends who suggested names more colorful than
Bootstrap, including Swiss Army Knife, Meat Axe, Swan-Dive, Jack-Rabbit, and my
personal favorite, the Shotgun, which to paraphrase Tukey, “can blow the head off
any problem if the statistician can stand the resulting mess.”

Bradley Efron1

23.1. Introduction

Throughout this book, we have used Monte Carlo simulations to demon-
strate statistical properties of estimators. We have simulated data generation
processes on the computer and then directly examined the results.

This chapter explains how computer-intensive simulation techniques can
be applied to a single sample to estimate a statistic’s sampling distribution.
These increasingly popular procedures are known as bootstrap methods.
They can be used to corroborate results based on standard theory or pro-
vide answers when conventional methods are known to fail.

When you “pull yourself up by your bootstraps,” you succeed – on your
own – despite limited resources. This idiom is derived from The Surprising
Adventures of Baron Munchausen by Rudolph Erich Raspe. The baron tells
a series of tall tales about his travels, including various impossible feats and
daring escapes. Bradley Efron chose “the bootstrap” to describe a particular
resampling scheme he was working on because “the use of the term bootstrap
derives from the phrase to pull oneself up by one’s own bootstrap . . . (The
Baron had fallen to the bottom of a deep lake. Just when it looked like all
was lost, he thought to pick himself up by his own bootstraps.)” [Efron and
Tibshirani (1993), p. 5].

In statistics and econometrics, bootstrapping has come to mean to resam-
ple repeatedly and randomly from an original, initial sample using each

1 Efron (1979, p. 25).
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bootstrapped sample to compute a statistic. The resulting empirical distri-
bution of the statistic is then examined and interpreted as an approximation
to the true sampling distribution.

The tie between the bootstrap and Monte Carlo simulation of a statistic
is obvious: Both are based on repetitive sampling and then direct exam-
ination of the results. A big difference between the methods, however, is
that bootstrapping uses the original, initial sample as the population from
which to resample, whereas Monte Carlo simulation is based on setting up
a data generation process (with known values of the parameters). Where
Monte Carlo is used to test drive estimators, bootstrap methods can be
used to estimate the variability of a statistic and the shape of its sampling
distribution.

There are many types of bootstrapping because there are many ways to
resample, and there are a variety of ways to use the bootstrapped samples.
The next section introduces the bootstrap by returning to the free-throw
shooting example used to explain Monte Carlo simulation. We then apply the
bootstrap with regression analysis, using data presented by Ronald Fisher.
Section 23.4 demonstrates how the Bootstrap Excel add-in can be used on
your own data to obtain bootstrapped SEs. We conclude our introduction to
bootstrapping by exploring how the bootstrap can be applied to get a measure
of the variability of the R2 statistic.

23.2. Bootstrapping the Sample Percentage

Workbook: PercentageBootstrap.xls

We introduce the bootstrap with a simple example. Suppose you had a single
sample of 100 free throws and computed the percentage made. If you did
not know the true, underlying accuracy of the free-throw shooter, your best
estimate of the shooter’s probability of making a free throw would be the
sample percentage made.

Of course, there is variability in the percentage made out of 100 free throws.
The standard error of the sample percentage can be estimated via conven-
tional methods by dividing the sample SD (an estimate of the unknown pop-
ulation SD) by the square root of the number of free throws. This is not the
exact SE because the true SD is unknown.

With the estimated SE of the sample percentage and taking advantage
of the central limit theorem, we can generate confidence intervals and com-
pute P-values. This relies on the sampling distribution being approximately
normal.

A bootstrapping approach to the problem of estimating the SE and finding
the sampling distribution of the sample percentage treats the original sample
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as a population from which to sample, with replacement, 100 free throws.
By repeatedly sampling 100 free throws from this artificial population, we
generate a list of bootstrapped sample percentages. The length of the list is
equal to the number of bootstrap repetitions. Each number in the list is the
percentage of 100 free throws made from a bootstrapped sample. Just as in
a Monte Carlo simulation, the spread in the list approximates the SE of the
sampling distribution, and the empirical histogram of the repetitions mirrors
the probability histogram of the sample percentage.

The PercentageBootstrap.xls workbook puts these ideas into action. From
the Introduction sheet, click the Draw a Sample button. A new sheet, called Origi-
nalSample, appears in the workbook. Columns A and B contain the results of
100 free-throw attempts. The workbook is set up so that the shooter will have
a true probability of success between 65 and 75 percent. The best estimate of
this unknown probability is the sample percentage. Cell D15 reports the esti-
mated SE using the conventional approach, and cells D17 and D18 display
the lower and upper bounds of a 95-percent confidence interval (relying on
the normal distribution).

To understand how the bootstrap method works, click the Draw One Bootstrap
Observation

button several times. Each click draws a new observation for the bootstrapped
sample (from the 100 free throws in the original sample) and places it in
columns H and I. The sampling is done with replacement, and each observa-
tion in the original sample is equally likely to be drawn. To obtain a complete
bootstrapped sample, we need 100 observations, the same size as the original
sample.

Instead of drawing the bootstrapped sample one observation at a time,
you can simply click the Draw One Bootstrap

Sample button to draw 100 observations. Click
the Draw One Bootstrap

Sample button repeatedly. Each click draws a bootstrapped sam-
ple. The bootstrapped sample percentage is displayed in cell I1. Each new
bootstrapped sample generates a new bootstrapped sample percentage.

A particular observation may appear more than once in a bootstrapped
sample, whereas another may not be drawn at all. Cell K1 displays the number
of times a particular observation, number 27 in the original sample, appears
in the bootstrapped sample. Click the Draw One Bootstrap

Sample button repeatedly and
keep your eye on cell K1. Sometimes observation number 27 does not appear
at all, but usually it is drawn at least once. As you repeatedly draw a new
bootstrapped sample, you will probably see it appear between zero and three
times.

The bounce in the bootstrapped sample percentage is the sampling varia-
tion we want to capture. We need to resample repeatedly, keeping track of
the sample percentage in each bootstrapped sample. Click the Bootstrap

Simulation  but-
ton to access a new sheet, Bootstrap, from which a bootstrap analysis can be
carried out.
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Average = 71.02%
SD = 4.53%
Max = 89%
Min = 51%

Empirical Histogram for 10,000 Repetitions
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Figure 23.2.1. Bootstrapping the sample percentage.
Source: [PercentageBootstrap.xls]Bootstrap.

When we drew a sample, our Original Sample had 71 free throws made.
Using conventional methods – that is, the sample SD divided by the square
root of n (the number of observations)– the estimated SE is 4.56 percentage
points. Our bootstrap results are displayed in Figure 23.2.1. The bootstrapped
SE, the estimate of the exact SE based on bootstrapping, is 4.53 percentage
points. How did you do?

When estimating the SE of the sample percentage of 100 free throws, the
bootstrap and conventional approaches are in substantial agreement. This
makes sense because both are using the same information from the original
sample. The conventional approach uses the sample SD to construct the
estimated SE via a formula. The bootstrap treats the sample as a population
and resamples from it. The bootstrap converges to the conventional result as
the number of repetitions increases.

The two methods differ in estimating the sampling distribution itself.
Instead of relying on the normal distribution to approximate the unknown
shape of the sampling distribution, the bootstrap uses the empirical histogram
from the simulation as an estimate of the sampling distribution. Brownstone
and Valleta clearly stake out the issues:

This bootstrap method described above will only give accurate estimates if the orig-
inal sample is large enough to reflect the true population accurately. The traditional
analytic approach approximates the sampling distribution by a normal distribution
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centered at the sample mean with variance equal to the sample variance. This tradi-
tional approximation requires that the sample be large enough for the central limit
theorem to apply to the sample mean. If the sample size is small and the true popu-
lation is not normally distributed, then the bootstrap approximation should be more
accurate. Brownstone and Valleta (2001, p. 130).

In other words, the bootstrap will do a better job of answering questions
that involve the shape of the sampling distribution when its profile is not
normal. Suppose, for example, that we wanted to know the chances that a
95-percent free-throw shooter will make 16 or less out of 20 free throws. The
standard approach will fare badly because the sampling distribution of the
sample percentage for this case is not very normal.

Summary

This section has introduced the bootstrap by showing how it can be used
to estimate the SE and sampling distribution of the sample percentage. By
sampling with replacement from an original sample, we generate an artificial
sample. We use the artificial, or bootstrapped, sample to compute a statistic of
interest. By repeating this procedure many times, we obtain an approximation
to the sampling distribution of the statistic. The next section shows how the
bootstrap can be applied to regression analysis.

23.3. Paired XY Bootstrap

Workbook: PairedXYBootstrap.xls

In the 1940s, “although digitalis had been a standard medication for heart
disease for more than a century, there were still no reliable methods for
evaluating its potency. Biological assays (bioassays) were performed on frogs,
pigeons, and cats, but none were totally satisfactory” (Scheindlin, 2001, p. 88).
In too high a dose, digitalis is deadly. Doctors needed to know the right dosage
for different patients. Experiments on laboratory animals were undertaken
in an attempt to determine toxicity levels.

In 1947, Ronald Fisher published an article that analyzed the data from
digitalis assays from 144 cats. The data set had the sex, heart weight (in
grams), and body weight (in kilograms) of each cat. Fisher’s Table 1 (see
Figure 23.3.1) displayed salient summary characteristics.

Fisher noted that the “heart as a fraction of the entire body” was remark-
ably similar for female and male cats. Could the optimal digitalis dose be
determined simply as a function of the patient’s body weight? After all, if
given body weight, heart weight is simply a constant fraction, then from
body weight we can infer heart weight and administer the correct dosage.
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Females Males
Number   47   97
Total Body Weight 110.9 Kg.   281.3 Kg.
Total Heart Weight 432.5 g. 1098.2 g.

Heart as fraction of entire body      .3900%       .3904%

Fisher's Original TABLE 1

 

Figure 23.3.1. Fisher’s cat data for digitalis study.
Source: [PairedXYBootstrap.xls]Data.

Unfortunately, closer inspection revealed that the correspondence between
body and heart weight broke down. Fisher reported that the slope coeffi-
cients from regressions of heart weight on body weight for each sex differed:
“namely .2637% for females and .4313% for males.” A 1-kg increase in body
weight led, on average, to a 4.313-g increase in heart weights for males but only
a 2.637-g increase in heart weights for females. Figure 23.3.2, which Fisher
did not include in his published article, shows the two individual regressions.

Fisher suspected that male and female cats in his sample had different rela-
tionships between body and heart weight. The next step required a decision
on whether this difference was real. It could be that the difference observed
in the sample was simply due to chance error in the selection of the particular
cats chosen for the study.

Fisher used the data to illustrate how the analysis of covariance method can
be used to determine if the coefficient estimates from the two regressions are
statistically significantly different from each other. He concluded that “the
close agreement between the sexes in the average percentage of the body
taken up by the heart seems to mask a real difference in the heart weight to
be expected for a given body weight” (Fisher 1947, p. 68).

HeartWt = 2.6364BodyWt + 2.9813
HeartWt = 4.3127BodyWt − 1.1841
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Figure 23.3.2. Individual regressions on female and male cats.
Source: [PairedXYBootstrap.xls]Data.
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Model 1 Model 2 Model 3 Model 4
Females Males Both Both

Intercept 2.981 −1.184 −0.497 −1.184
(1.485) (0.998) (0.868) (0.925)

Body Weight (kg) 2.6364 4.3127 0.082 4.313
(0.625) (0.340) (0.304) (0.315)

Female 4.076 4.165
(0.295) (2.062)

Female*BodyWeight (kg) −1.676
(0.837)

N 47 97 144 144
RMSE 1.162 1.557 1.457 1.442

R2 0.28 0.63 0.65 0.66
SEs in parentheses

Dependent Variable: Heart Weight (g)

 

Figure 23.3.3. Uncovering gender differences via regression.
Source: [PairedXYBootstrap.xls]Data.

Although he chose to use the analysis of covariance method, Fisher could
have explored the effect of sex on the relationship between heart and body
weight with multiple regression analysis. Figure 23.3.3 compares the results
from four models. Models 1 and 2 treat females and males separately. Model 3
is a multivariate model that forces the slopes to be equal but allows the
intercepts to be different for female and male cats. The interaction term,
Female*BodyWeight (kg), in Model 4 relaxes the restriction on the slopes.
The coefficient on the interaction term has a P-value of 4.7% when testing the
null that it is 0. We would conclude that the slopes are statistically significantly
different from each other.

The hypothesis test of the null that the coefficient on Female*Body Weight
(kg) is zero relies heavily on the estimated SE. In turn, the computation of the
estimated SE is based on the estimate of the spread of the errors, the RMSE.
Ordinary least squares regression requires homoskedastic errors and uses a
single number to estimate the spread of the errors. Unfortunately, the RMSEs
from the individual regressions are worrisome because it looks like the male
cats have much greater spread around the regression line (RMSE = 1.557)
than the female cats (RMSE = 1.162). This is evidence of heteroskedasticity.
Fisher was aware of this problem and ended the paper with the following
observation: “It may be noted that the estimated variance of heart weight for
given body weight in males, 2.424 g.2, is considerably greater than the value
for females, 1.351 g.2 The greater residual variance for males possibly was
related to their larger size. The heaviest female weighed 3.0 Kg. while nearly
40 percent of the males exceeded this weight” (Fisher 1947, p. 68).

Heteroskedastic errors pose serious problems for OLS regression analy-
sis. Although estimates remain unbiased, OLS is no longer the best linear
unbiased estimator, and the reported OLS estimated SEs cannot be trusted.
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Regression Statistics for Heart Weight (g)
Number of observations 144 Number of missing observations = 0
Mean of Dep Var 10.631
RMSE 1.442
Coefficient Estimates
Variable Estimate SE Robust SE
Intercept −1.184 0.925 1.166
Female 4.165 2.062 1.854
Female*BodyWeight (kg) −1.676 0.837 0.735
Body Weight (kg) 4.313 0.315 0.414  

Figure 23.3.4. Robust SEs of regression coefficients.
Source: [PairedXYBootstrap.xls]Data.

Because we use the estimated SE to compute the t-statistic and P-value, the
hypothesis test conducted on the Female*Body Weight (kg) coefficient is
flawed.

The conventional solution is to estimate SEs that are robust to the pres-
ence of heteroskedasticity. Figure 23.3.4 shows the results of this approach
(using the OLS Regression add-in described in detail in the chapter on het-
eroskedasticity). The estimated SE falls by 12 percent from 0.837 to 0.735.
The P-value on the null that the slope is zero falls by half from 4.7 to 2.4%.

Another approach to estimating the SE is to use the bootstrap. For regres-
sion analysis, several different resampling schemes are possible. We will
demonstrate the most popular one, called paired XY or case resampling.
Using the original sample with 144 observations, three independent vari-
ables (Female, Female*Body Weight, and Body Weight), and the dependent
variable (Heart Weight), we generate each bootstrap sample by randomly
drawing 144 rows from the data.

Scroll over to column AK in the Data sheet of PairedXYBootstrap.xls.
Click the Draw One Bootstrap

Observation button several times. Each click draws a new obser-
vation for the bootstrapped sample and places it in columns AK, AL, AM, and
AN. Each click takes an entire row or record (which accounts for the names
paired XY or case resampling). The sampling is done with replacement, and
each observation in the original sample is equally likely to be drawn. To get a
complete bootstrapped sample, simply click the Draw One Bootstrap

Sample button to draw
144 observations. Click the Draw One Bootstrap

Sample button repeatedly. Each click draws
a bootstrapped sample. Regression results for the artificial bootstrapped sam-
ple are displayed in cells AP2:AS6 of the Data sheet. Each new bootstrapped
sample generates a new bootstrapped regression line. The cell highlighted in
yellow (AQ2) is the coefficient for the interaction term.

The bootstrapped SE of the slope of Female*Body Weight (kg) is the stan-
dard deviation from the list of coefficients generated by repeatedly resam-
pling. The Bootstrap sheet enables you to run your own analysis by simply
clicking the Run Bootstrap button. Figure 23.3.5 shows our results.
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Slope Female*BodyWt Estimates Average - Original Sample Slope Female*BodyWt Estimate

Average −1.6903 −0.0140

SD 0.7224
Max 0.9250
Min −4.7243

Empirical Histogram for 10,000 Repetitions
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Figure 23.3.5. Bootstrapping the interaction term.
Source: [PairedXYBootstrap.xls]Bootstrap.

The bootstrapped SE, the spread of the 10,000 bootstrapped coefficients,
is about 0.72 or 0.73. This agrees with the estimated SE via robust methods,
0.735. By resampling the entire row, or case, the paired XY bootstrap correctly
handles the heteroskedasticity.

To construct a confidence interval or conduct a test of significance via the
bootstrap, we have the possibility of two approaches. First, one can simply use
the bootstrapped SE as the estimated SE in a conventional computation. For
example, for a hypothesis test of the null that the coefficient on the interaction
term is zero, we use the bootstrapped SE to compute the t-statistic:

observed − expected
estimated SE

= −1.676 − 0
0.722

= −2.32.

This t-stat produces a P-value of about 2.2 percent.
There is an alternative to marrying the SE generated via the bootstrap to the

conventional approach. By directly using the bootstrapped approximation to
the sampling distribution, we can compute confidence intervals and conduct
hypothesis tests. A 95-percent confidence interval for the interaction term
coefficient is simply the 2.5th to the 97.5th percentile of the 10,000 bootstrap
repetitions. Scroll over to column AJ of the Bootstrap sheet to see that this
interval is from roughly −3.0 to −0.2. Because the interval does not cover 0,
you would reject the null that the true parameter value is 0.2

2 Efron and Tibshirani (1993) discuss the connection between confidence intervals and hypothesis tests.
The simple approach to bootstrapping canfidence intervals presented here, the percentile method, is
not used very often. For a review of better alternatives, see DiCiccio and Efron (1996).
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It appears Fisher was right. There is a statistically significant difference
in the relationship between body and heart weight for male and female cats.
Using the usual estimated SEs from OLS, however, is an inappropriate way of
obtaining the variability in the estimated coefficients because heteroskedas-
ticity is present. Robust SE methods and the bootstrap are two alternative,
better approaches.

Summary

In the previous section, we bootstrapped the SE of the sample percentage by
generating an artificial sample, finding the sample percentage for the artificial
sample, and repeating the procedure many times. This section has done the
same thing. From an original sample, we generated a pretend sample, ran a
regression on the pretend sample, and repeated the procedure 10,000 times.
The heart of bootstrapping is to generate artificial samples and construct the
same statistic on each sample as the statistic of interest in the original sample.

In both examples thus far, the spreadsheet has been set up for you. Can
you run a bootstrap analysis on your own data? Yes, you can, and the next
section shows you how.

23.4. The Bootstrap Add-In

Workbooks: PairedXYBootstrap.xls; Bookstrap.xla (Excel add-in)

The previous sections introduced bootstrapping using workbooks especially
designed for that purpose. This section shows how to use an Excel add-in
packaged with this book that enables you to run a bootstrap from any Excel
workbook. Thus, the add-in allows you to use bootstrapping methods on your
own data and your own statistic of interest.

The first step is to install the Bootstrap add-in. The software is in the
Basic Tools\ExcelAddIns\Bootstrap folder. Open the Bootstrap.doc file in
that folder for instructions on how to install and use the add-in.

Having installed the Bootstrap.xla file, open the PairedXYBootstrap.xls
workbook to test drive the Bootstrap simulation add-in. The Female sheet
shows the OLS estimated SE on Body Weight is about 0.625. Let us use the
Bootstrap add-in to find the Paired XY bootstrap SE of Body Weight.

Begin by inserting a sheet into the workbook (Insert: Worksheet) and
renaming it BootFemale and then go to the Data sheet and copy the body
and heart weight data for the female cats (cell range C1:D48) to the A1:B48
range of the BootFemale sheet. We use the data in the BootFemale sheet
as our original sample and the same range as the place in which we will
write our bootstrapped resamples. This will destroy the original sample in
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Figure 23.4.1. Preparing to run a bootstrap.

the BootFemale sheet, but we have it in the Data sheet and thus this is not a
problem.

We need, however, to compute the statistic of interest (the OLS estimated
SE of Body Weight) for each bootstrapped sample. We can use Excel’s
LINEST function for this. In the BootFemale sheet, select a 5 × 2 cell range
and use LINEST to regress Heart Weight on Body Weight. With the data in
the BootFemale sheet in cells A1:B48, the LINEST formula should look like
this: “= LINEST(B2:B48,A2:A48,1,1).” The LINEST results (especially the
OLS estimated SE for Body Weight) should be exactly equal to the regression
results in the Female sheet.

With LINEST available to recompute the slope coefficients as we repeat-
edly put down new samples in the worksheet, we are ready to bootstrap.
Execute Tools: Bootstrap . . . to bring up the bootstrap dialog box.
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Average 2.634 1000 repetitions
SD 0.6082
Max 4.911
Min 0.940

Summary Statistics Notes

Histogram of Boot Female!$ D$ 3

0.9 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9

Figure 23.4.2. Results from the bootstrap add-in for the heart weight coefficient.

Enter the same cell range for the Original and Bootstrap Sample input
boxes and select the coefficient on Body Weight as the cell to be tracked.
Figure 23.4.1 shows how the dialog box should look. The BootFemale!
$A$2:$B$48 range contains the data, and we selected cell D3 as the tracking
cell because we put Excel’s LINEST array function in cells D3:E7, which
reports the slope coefficient in cell D3. We obtain a bootstrapped approxi-
mation of the slope coefficient’s sampling distribution by repeatedly resam-
pling and keeping track of the slope coefficient from each bootstrapped
sample.

When you click the Proceed button, the add-in immediately warns you
that the original sample data will be overwritten. The Bootstrap add-in reads
the original sample, samples from it (with replacement), and then writes the
bootstrap sample (temporarily) to the spreadsheet. It records the tracked
cell and then repeats this procedure for as many repetitions as you request.
Because the original sample is used as the place in which bootstrapped sam-
ples are written, a warning is issued. In this case, we can safely proceed
because the original female cat data is in the Data sheet.

When the bootstrap simulation finishes its last repetition, a worksheet is
added to the workbook that displays the first 100 repetitions along with sum-
mary statistics and a histogram of the complete results (see Figure 23.4.2).

For female cats, the paired XY bootstrapped SE and OLS estimated SE on
Body Weight are almost the same. This is not true for the male cats (as the
Q&A sheet in the PairedXYBootstrap.xls workbook asks you to show).
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Summary

You may have noticed that the bootstrap built into the workbook is much
faster. Unlike the simulations in the Bootstrap sheet, the Bootstrap add-in
spends a great deal of time writing each sample to the spreadsheet. Using
this add-in on a large data set may be impractical (although the authors have
let the Bootstrap add-in run over night).

The Bootstrap add-in is ideal, however, for exploring problems on your
own. Any statistic you can compute on the spreadsheet, no matter how com-
plicated, can be bootstrapped. The next section shows how to apply bootstrap
methods to a statistic for which no conventional method exists for estimating
its sampling distribution.

23.5. Bootstrapping R2

Workbook: BootstrapR2.xls

In this section, we apply the bootstrap to a statistic for which there is no
standard analytical means of estimating its variability. We also introduce a
new resampling scheme called the residuals bootstrap.

The coefficient of determination, commonly abbreviated and reported sim-
ply as R2, is often used as a measure of the overall goodness of fit of a regres-
sion. This coefficient ranges from 0 to 1: 0 signifies that the regression explains
none of the observed variance in the dependent variable, and 1 denotes a
perfect fit. Chapter 5 explains the R2 statistic in detail and shows how it is
calculated. Excel reports R2 through its Data Analysis: Regression add-in
and in the third row and first column of the LINEST array function.

Like the sample slope, estimated SE, and other sample-based statistics, R2

is a random variable. If you draw a new sample, a new R2 will result. Ohtani
(2000) points out that the sampling properties of R2 have been investigated.
Researchers, however, rarely, if ever, report a measure of the precision of
the R2 value because the sampling distribution of R2 is complex and depends
on the particular values of the X variables. Thus, although we know R2 is a
random variable, without an SE, confidence intervals and hypotheses tests
using R2 are simply ignored.

The bootstrap offers a way to estimate the SE of R2 and its sampling dis-
tribution. The bootstrap, in this case, is conducted by repeatedly resampling
from the original sample and keeping track of the R2 of each artificial sample.
Just like any other sample-based statistic, we can approximate the sampling
distribution of R2 via the empirical histogram generated by the bootstrap
simulation and use the SD of the bootstrapped R2 values as an estimate of
the exact SE of R2.
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Figure 23.5.1. The data sheet.
Source: [BootstrapR2.xls]Data

Open the Excel workbook BootstrapR2.xls and go to the Data sheet. Both
the Monte Carlo Simulation and Bootstrap add-ins will be applied to this
workbook, and so you need to have them available.

Let us begin with a tour of the Data sheet, a portion of which is displayed in
Figure 23.5.1. Hit F9 to recalculate the sheet and confirm that R2 is a random
variable.

The data generation process meets all of the classical model’s requirements.
The X’s are fixed in repeated sampling (and thus do not change when you hit
F9); the errors are independently and identically distributed (and, in addition,
drawn from a normal distribution); and each Y is generated by β0 + β1X1 +
β2X2 + ε.

The Data sheet allows you to control two crucial parameters, the sample
size and �, by clicking on the buttons. The Greek letter � is the parent
coefficient of determination. This parameter controls the position and shape
of the sampling distribution of R2. In Figure 23.5.1, and on the spreadsheet in
cell G16, notice that � (set at 0.667) does not equal the R2 obtained from the
20 observation sample. This is due to chance error, which is also responsible
for the deviation of the sample coefficients (in the first row of the LINEST
Regression Results table) from their respective parameter values (the betas
in cells H5:H7).

Unlike the sample slope coefficients, whose expected value is equal to
the parameter value, R2 is a biased estimator of �. The R2 statistic is con-
sistent, however, and thus, as the sample size increases, its expected value
does converge to its parent parameter value (and the SE converges to 0).
You can quickly get a sense of the sampling distribution of R2 by running a
Monte Carlo simulation. Execute Tools: MCSim . . . and select cell G16 as the
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tracking variable. The average of your Monte Carlo repetitions is an approx-
imation to the expected value, and the SD is an estimate of the exact SE.
Your results should be similar to the MCSimN20Phi0.667 sheet (available
by clicking the Show MCSim

Results button). Note the bias of R2 as an estimator of �

(the average of the 10,000 R2 values is not close to 0.667) and the nonnormal
shape of the histogram.

Now that the properties of the sampling distribution for R2 for this data
generation process are known, we are ready to proceed to the bootstrap.
Instead of using the paired XY Bootstrap, we introduce a different resampling
scheme. The residuals bootstrap uses the residuals as a stand-in for the errors
and produces a bootstrapped sample by shuffling the residuals and creating
a bootstrapped Y observation according to the equation

Bootstrapped Y = b0 + b1 X1 + b2 X2 + residual.

Note that the coefficients are not the β’s (because the true parameter values
are unknown) but the original sample-estimated coefficients.

Some preparatory work is needed to run the residuals bootstrap, but we
have set up the spreadsheet for you. Click the Draw a Single

Sample button in the Data
sheet to obtain an Original Sample and regression results. Click on the Y data
cells in column AE to see that the cells contain numbers (not formulas) that
represent a single realization from the data generation process. Column AD
is blank because you cannot observe the errors.

Cell range AG14:AI18 of the Data sheet reports the regression results
for your Original Sample. Cell AG16 displays the R2 value for which we
want to find the SE. In column AK, we have computed the residual for
each observation. Click on cell AK14 to see the usual actual minus predicted
formula for the residual.

The data next to the residuals column are labeled “Adj residuals.” By mul-
tiplying the residuals by an adjustment factor, we improve the performance
of the bootstrap.3 The Adj Residuals represent the errors and are our artifi-
cial population. By sampling with replacement from the Adj Residuals, we
can create artificial dependent variables and bootstrapped regression results.
Click on one of the Boot Y cells in column AQ and examine the formula. It
uses the Original Sample coefficients along with a randomly sampled Boot
Residual to form Boot Y.

We will use the Bootstrap add-in to write the Boot Residuals in column
AP and track the R2 for each bootstrapped sample in cell AS16. Figure 23.5.2
shows how the Bootstrap add-in should be configured.

Click Proceed to obtain a bootstrap estimate of the variability of R2 and the
shape of its sampling distribution. You now have Monte Carlo and Bootstrap

3 For more on rescaling the residuals, see Wu (1986, p. 1281).
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Figure 23.5.2. Setting up the bootstrap.
Source: Bootstrap.xla add-in.

simulation results. It is time to figure out what all of this means. Figure 23.5.3
compares the Monte Carlo with the Bootstrap for n = 20 and � = 0.667.

The Monte Carlo results, on the left, are a good approximation to the true
sampling distribution of R2. The average of the 10,000 repetitions is 0.706,
which is close to the exact expected value (reported by Ohtani) of 0.7053.
Similarly, the SD of the 10,000 repetitions, 0.0945, is a good approximation to
Ohtani’s exact SE of 0.0955. The Monte Carlo simulation is based on knowing
the data generation process and simply repeating it and directly examining
the results. Your Monte Carlo results should be quite close to ours. It should
not be surprising that the Monte Carlo with 10,000 repetitions does a good
job of reflecting the true sampling distribution.

The Bootstrap results, the right panel in Figure 23.5.3, are not as good as the
Monte Carlo results. With 1,000 bootstrap repetitions, we had an average R2 of
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Average 0.706 N
SD 0.0945 Phi 0.667
Max
Min

Summary Statistics Notes

Histogram of Data!$G$16

0.25 0.35 0.45 0.55 0.65 0.75 0.85

Average 0.663 N 20
SD 0.1103 Phi 0.667
Max
Min

Summary Statistics Notes

Histogram of Data!$AS$16

0.26 0.36 0.46 0.56 0.66 0.76 0.86

0.939
0.257 0.272

0.935

20

Figure 23.5.3. Monte Carlo and bootstrap simulation results.
Source: [BootstrapR2.xls]Data.

0.663 with an SD of 0.1103. Your bootstrap results may be markedly different
from ours (available by clicking the Show Bootstrap

Results button). To understand the
inferiority of the bootstrap compared with the Monte Carlo, remember that
the latter is based on knowing and running the true data generation pro-
cess. The bootstrap, however, takes one Original Sample – one realization of
the DGP – and treats it as a population from which to resample. The boot-
strap relies on the premise that the Original Sample will closely mirror the
population. The sample size, however, is merely 20 in this case, and so it is
quite possible that the Original Sample differs substantially from the true
population.

In fact, seen in this light, it is actually quite remarkable that the bootstrap
does as well as it does. After all, the bootstrapped and Monte Carlo sam-
pling distributions are reasonably similar, and our bootstrap approximate SE
(0.1103) is not that far off the true mark (0.0955).

Of course, to run a full test of the bootstrap, we would have to nest simula-
tions. In other words, take an Original Sample, bootstrap it (like we did), then
take another Original Sample, bootstrap it, and repeat this many times. The
Advanced Thinking button allows you to do exactly this, but Ohtani (2000) has done
the hard work for us. His experiments show that the Residuals Bootstrap has
an expected value of 0.7089 with a spread of 0.0899. This shows that, for this
case, the Residuals Bootstrap does a good job of approximating the sampling
distribution of R2.

Once a bootstrap approximation of the variability of the statistic has been
obtained, we have two options: (1) use the Bootstrapped SE in conventional
ways to construct confidence intervals and conduct tests of significance or (2)
use the bootstrapped values themselves for these purposes. Note that we are
using the bootstrap to estimate the variability of R2, not the statistic itself.



P1: IYP
0521843197c23 CB962B/Barretto 0 521 84319 7 September 25, 2005 1:15

726 Bootstrap

Could we have used the paired XY instead of the residuals bootstrap on
this problem? Yes, and the Q&A sheet in BootstrapR2.xls invites you to do
so. Remember that, unlike Fisher’s cat data, the DGP in the BootstrapR2.xls
workbook exactly follows the classical econometric model. If you know that
the errors are identically, independently distributed, then the Residuals
Bootstrap is appropriate. On the other hand, if the DGP is based on sam-
pling X and Y from a population, then use the paired XY Bootstrap. In gen-
eral, the bootstrap procedure adopted should mimic the DGP as closely as
possible.

Unlike the paired XY Bootstrap, if the residuals bootstrap is applied to
Fisher’s cat data (in PairedXYBootstrap.xls), you will not correctly estimate
the sampling distribution. You could use a modified residuals bootstrap, tying
the size of the residual to whether the cat was male or female.

As Efron and Tibshirani make clear, “perhaps the most important point
here is that bootstrapping is not a uniquely defined concept” (Efron and
Tibshirani 1993, p. 113). In other words, within the realm of “resample from
an original sample,” there are a great many possibilities in the resampling
scheme. Research in bootstrapping methods focuses on the properties of
alternative resampling plans.

Summary

Unlike previous sections in this chapter where we used bootstrapping meth-
ods to reproduce results obtained with conventional techniques, this section
showed how the bootstrap can be used to estimate the variability of R2, a
statistic with a sampling distribution whose analytical solution is beyond the
reach of traditional statistical practice. This example also allowed us to intro-
duce the idea that there is more than one way to resample. The next section
concludes our introduction to the bootstrap by highlighting a few of the points
in the debate about the role of bootstrap methods.

23.6. Conclusion

The heart of the bootstrap is not simply computer simulation, and bootstrap-
ping is not perfectly synonymous with Monte Carlo. Bootstrap methods rely
on using an original sample (or some part of it, such as the residuals) as an
artificial population from which to randomly resample.

Because the bootstrap utilizes resampling, advances in computing power
have facilitated the development of the bootstrap. Bradley Efron is recog-
nized as the inventor of the bootstrap – not because he was the first to con-
ceive of replacing an unknown population with a single sample but because
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he realized that the explosion in computing would permit a wide variety of
resampling schemes.

The method, however, is still in its infancy, and many questions remain
unanswered.

Grand claims sometimes have been made for bootstrap analysis. For instance, Efron
and Tibshirani (1993) and Vinod (1998) envision the bootstrap as part of a strategy
to find universally applicable methods for estimation and inference, which can be
implemented with very little effort or analysis by researchers. This vision is tempt-
ing, especially given the ease and speed with which bootstrap estimates for many
models can be obtained using modern desktop computers. However, Manski (1996)
argues that this vision is flawed due to the inherent ambiguity of statistical theory in
comparing alternative estimation procedures.

Brownstone and Valleta (2001, p. 139)

The fundamental requirement of the bootstrap is that the resampling be
faithful to the data generation process. This can be difficult to do in practice.
Consider the two bootstrap methods used in this chapter: paired XY and
residuals bootstraps. These are two of many possible resampling schemes.
The paired XY Bootstrap handled the heteroskedasticity in Fisher’s cat data,
but it is not always clear which resampling strategy is best for a particular
case.

But critics have not been able to slow the advance of bootstrap methods.
Modern data analysis software includes commands for bootstrapping, and
the latest research papers report bootstrap results. Econometrics textbooks
increasingly devote space to explaining the bootstrap.

The allure of the bootstrap is due to the weakness of its competition as
much as its own inherent advantages. Remember that conventional statis-
tical theory relies heavily on large-sample asymptotic theory. With finite
sample sizes, we know for a fact that using the limiting distribution (for
example, the normal distribution for a regression coefficient) is merely
an approximation to the exact sampling distribution. Research is show-
ing that bootstrapping outperforms the conventional approach in areas in
which the shape of the sampling distribution is crucial such as confidence
intervals.

In addition, bootstrap methods force you to confront the data generation
process directly. You must describe the way the dependent variable is gener-
ated and the role of the X’s (for example, fixed or stochastic) to construct a
resampling scheme that mimics the DGP. Once so described, the bootstrap
can quickly approximate the sampling distribution of complicated statis-
tics that would require difficult (and sometimes impossible) mathematical
derivations.

Finally, no restrictive distributional assumptions are required to use the
bootstrap. The sample data simply are what they are. Are the errors normally
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distributed? This is a crucial question for anyone wishing to apply a conven-
tional t-test correctly, but the answer is irrelevant for a bootstrap analysis.

“Bootstrap methods, and other computationally intensive statistical tech-
niques, continue to develop at a robust pace. . . . The twenty-first century may
or may not use different theories of statistical techniques, but it will certainly
be a different, better world for statistical practitioners” (Efron and Tibshirani
1993, p. 394).

23.7. Exercises

1. In Section 23.2, the text claims that, “in other words, the bootstrap will do a better
job of answering questions that involve the shape of the sampling distribution
when its profile is not normal. Suppose, for example, that we wanted to know the
chances that a 95-percent free throw shooter will make 16 or less out of 20 free
throws. The standard approach will fare badly because the sampling distribution
of the sample percentage for this case is not very normal.”
a. Use the normal approximation to estimate the chances that a 95-percent free-

throw shooter will make 16 or less out of 20 free throws. Describe your pro-
cedure and show your work. HINT: You need to find the SE of the sample
percentage and use the endpoint correction (calculating the area under the
normal curve up to 16.5, instead of just 16).

b. Suppose you had an original sample of 19 out of 20 free throws made. Use the
Bootstrap add-in to find the chances that the shooter will make 16 or less out of
20 free throws. Describe your procedure and take a screenshot of your results.

c. Given your work in parts a. and b., what do you conclude about the claim
that the bootstrap will do better than the standard approach (using the normal
approximation)?

2. Suppose you had an original sample from a 95-percent free shooter in which he
or she made all 20 free throws. How would the bootstrap work in this case?

3. Use the Bootstrap sheet in PairedXYBootstrap.xls to estimate the SE and sampling
distribution of the coefficient on BodyWeight in Model 4. Take a screenshot of
your bootstrap results.

4. The OLS estimated SE for the coefficient on BodyWeight in Model 4 is 0.315.
Does your bootstrap SE substantially agree with the OLS estimated SE? Explain
the reason for the difference or agreement.

5. Use the Bootstrap add-in to run a residuals bootstrap of the coefficient on Body-
Weight in Model 4. Take a screenshot of your bootstrap results.

6. Compare the paired XY and residuals bootstraps for this case. Which one do you
prefer? Why?
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